A boundary layer model for ice stream margins

International audience The majority of Antarctic ice is discharged via long and narrow fast-flowing ice streams. At ice stream margins, the rapid transition from the vertical shearing flow in the ice ridges surrounding the stream to a rapidly sliding plug flow in the stream itself leads to high stre...

Full description

Bibliographic Details
Published in:Journal of Fluid Mechanics
Main Authors: Haseloff, M., Schoof, C., Gagliardini, Olivier
Other Authors: Department of Earth, Ocean and Atmospheric Sciences Vancouver (UBC EOAS), University of British Columbia (UBC), Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Institut universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2015
Subjects:
Online Access:https://insu.hal.science/insu-01235613
https://doi.org/10.1017/jfm.2015.503
id ftunivsavoie:oai:HAL:insu-01235613v1
record_format openpolar
spelling ftunivsavoie:oai:HAL:insu-01235613v1 2024-05-12T07:54:31+00:00 A boundary layer model for ice stream margins Haseloff, M. Schoof, C. Gagliardini, Olivier Department of Earth, Ocean and Atmospheric Sciences Vancouver (UBC EOAS) University of British Columbia (UBC) Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Institut universitaire de France (IUF) Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) 2015-10 https://insu.hal.science/insu-01235613 https://doi.org/10.1017/jfm.2015.503 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2015.503 insu-01235613 https://insu.hal.science/insu-01235613 doi:10.1017/jfm.2015.503 ISSN: 0997-7546 EISSN: 1873-7390 European Journal of Mechanics - B/Fluids https://insu.hal.science/insu-01235613 European Journal of Mechanics - B/Fluids, 2015, 781, pp.353-387. ⟨10.1017/jfm.2015.503⟩ [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2015 ftunivsavoie https://doi.org/10.1017/jfm.2015.503 2024-04-18T00:33:23Z International audience The majority of Antarctic ice is discharged via long and narrow fast-flowing ice streams. At ice stream margins, the rapid transition from the vertical shearing flow in the ice ridges surrounding the stream to a rapidly sliding plug flow in the stream itself leads to high stress concentrations and a velocity field whose form is non-trivial to determine. In this paper, we develop a boundary layer theory for this narrow region separating a lubrication-type ice ridge flow and a membrane-type ice stream flow. This allows us to derive jump conditions for the outer models describing ridge and stream self-consistently. Much of our focus is, however, on determining the velocity and shear heating fields in the margin itself. Ice stream margins have been observed to change position over time, with potentially significant implications for ice stream discharge. Our boundary layer model allows us to extend previous work that has determined rates of margin migration from a balance between shear heating in the margin and the cooling effect of margin migration into the colder ice of the surrounding ice ridge. Solving for the transverse velocity field in the margin allows us to include the effect of advection due to lateral inflow of ice from the ridge on margin migration, and we demonstrate that this reduces the rate of margin migration, as previously speculated. Article in Journal/Newspaper Antarc* Antarctic Université Savoie Mont Blanc: HAL Antarctic Journal of Fluid Mechanics 781 353 387
institution Open Polar
collection Université Savoie Mont Blanc: HAL
op_collection_id ftunivsavoie
language English
topic [SDE]Environmental Sciences
spellingShingle [SDE]Environmental Sciences
Haseloff, M.
Schoof, C.
Gagliardini, Olivier
A boundary layer model for ice stream margins
topic_facet [SDE]Environmental Sciences
description International audience The majority of Antarctic ice is discharged via long and narrow fast-flowing ice streams. At ice stream margins, the rapid transition from the vertical shearing flow in the ice ridges surrounding the stream to a rapidly sliding plug flow in the stream itself leads to high stress concentrations and a velocity field whose form is non-trivial to determine. In this paper, we develop a boundary layer theory for this narrow region separating a lubrication-type ice ridge flow and a membrane-type ice stream flow. This allows us to derive jump conditions for the outer models describing ridge and stream self-consistently. Much of our focus is, however, on determining the velocity and shear heating fields in the margin itself. Ice stream margins have been observed to change position over time, with potentially significant implications for ice stream discharge. Our boundary layer model allows us to extend previous work that has determined rates of margin migration from a balance between shear heating in the margin and the cooling effect of margin migration into the colder ice of the surrounding ice ridge. Solving for the transverse velocity field in the margin allows us to include the effect of advection due to lateral inflow of ice from the ridge on margin migration, and we demonstrate that this reduces the rate of margin migration, as previously speculated.
author2 Department of Earth, Ocean and Atmospheric Sciences Vancouver (UBC EOAS)
University of British Columbia (UBC)
Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Institut universitaire de France (IUF)
Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Observatoire des Sciences de l'Univers de Grenoble (OSUG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Haseloff, M.
Schoof, C.
Gagliardini, Olivier
author_facet Haseloff, M.
Schoof, C.
Gagliardini, Olivier
author_sort Haseloff, M.
title A boundary layer model for ice stream margins
title_short A boundary layer model for ice stream margins
title_full A boundary layer model for ice stream margins
title_fullStr A boundary layer model for ice stream margins
title_full_unstemmed A boundary layer model for ice stream margins
title_sort boundary layer model for ice stream margins
publisher HAL CCSD
publishDate 2015
url https://insu.hal.science/insu-01235613
https://doi.org/10.1017/jfm.2015.503
geographic Antarctic
geographic_facet Antarctic
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source ISSN: 0997-7546
EISSN: 1873-7390
European Journal of Mechanics - B/Fluids
https://insu.hal.science/insu-01235613
European Journal of Mechanics - B/Fluids, 2015, 781, pp.353-387. ⟨10.1017/jfm.2015.503⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2015.503
insu-01235613
https://insu.hal.science/insu-01235613
doi:10.1017/jfm.2015.503
op_doi https://doi.org/10.1017/jfm.2015.503
container_title Journal of Fluid Mechanics
container_volume 781
container_start_page 353
op_container_end_page 387
_version_ 1798849914110738432