Elastoviscoplastic micromechanical modeling of the transient creep of ice

International audience A salient feature of the rheology of isotropic polycrystalline ices is the decrease of the strain rate by more than 2 orders of magnitude during transient creep tests to reach a secondary creep regime at a strain which is systematically of ∼1%. We use a recent (so-called “affi...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Castelnau, Olivier, Duval, Paul, Montagnat, Maurine, Brenner, Renald
Other Authors: Propriétés mécaniques et thermodynamiques des matériaux (PMTM), Centre National de la Recherche Scientifique (CNRS), Institute of Geophysics and Planetary Physics San Diego (IGPP), Scripps Institution of Oceanography (SIO - UC San Diego), University of California San Diego (UC San Diego), University of California (UC)-University of California (UC)-University of California San Diego (UC San Diego), University of California (UC)-University of California (UC), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2008
Subjects:
Online Access:https://insu.hal.science/insu-00378329
https://insu.hal.science/insu-00378329/document
https://insu.hal.science/insu-00378329/file/2008JB005751.pdf
https://doi.org/10.1029/2008JB005751
Description
Summary:International audience A salient feature of the rheology of isotropic polycrystalline ices is the decrease of the strain rate by more than 2 orders of magnitude during transient creep tests to reach a secondary creep regime at a strain which is systematically of ∼1%. We use a recent (so-called “affine”) version of the self-consistent mean-field theory to model the elastoviscoplastic behavior of ice. The model aims at bridging scales between the rheology of single grain and the one of polycrystals by evaluating the intergranular interactions. It takes into account the long-term memory effects, which manifests itself by the fact that local stress and strain rate in grains depend on the whole mechanical history of the polycrystal. It is shown that the strong hardening amplitude during the transient creep is entirely explained by the stress redistribution within the specimen, from an almost uniform stress distribution upon instantaneous loading (purely elastic response) to strong interphase and intraphase heterogeneities in the stationary regime (purely viscoplastic response). The experimental hardening kinetic is much too slow to be explained by the same process; it is attributed to the hardening of hard glide slip systems (prismatic slip) in the transient regime. Moreover, the model very well reproduces the permanent creep rate of several highly anisotropic specimens of the Greenland Ice Core Project ice core (pronounced crystallographic textures), when accounting for a single-grain rheology that well matches the experimental one. Our results are consistent with recent findings concerning dislocation dynamics in ice.