Ensemble analysis and forecast of ecosystem indicators in the North Atlantic using ocean colour observations and prior statistics from a stochastic NEMO/PISCES simulator
This study is anchored in the H2020 SEAMLESS project (www.seamlessproject.org), which aims to develop ensemble assimilation methods to be implemented in Copernicus Marine Service monitoring and forecasting systems, in order to operationally estimate a set of targeted ecosystem indicators in various...
Main Authors: | , , , , |
---|---|
Other Authors: | , , , , , , , , |
Format: | Report |
Language: | English |
Published: |
HAL CCSD
2023
|
Subjects: | |
Online Access: | https://hal.science/hal-04307146 https://hal.science/hal-04307146/document https://hal.science/hal-04307146/file/egusphere-2023-2026.pdf https://doi.org/10.5194/egusphere-2023-2026 |
_version_ | 1821644671823118336 |
---|---|
author | Popov, Mikhail Brankart, Jean-Michel Capet, Arthur Cosme, Emmanuel Brasseur, Pierre |
author2 | Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) University of Liege Laboratoire des Écoulements Géophysiques et Industriels Grenoble (LEGI) Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) |
author_facet | Popov, Mikhail Brankart, Jean-Michel Capet, Arthur Cosme, Emmanuel Brasseur, Pierre |
author_sort | Popov, Mikhail |
collection | Université Savoie Mont Blanc: HAL |
description | This study is anchored in the H2020 SEAMLESS project (www.seamlessproject.org), which aims to develop ensemble assimilation methods to be implemented in Copernicus Marine Service monitoring and forecasting systems, in order to operationally estimate a set of targeted ecosystem indicators in various regions, including uncertainty estimates. In this paper, a simplified approach is introduced to perform a 4D (space-time) ensemble analysis describing the evolution of the ocean ecosystem. An example application is provided, which covers a limited time period in a limited subregion of the North Atlantic (between 31 • W and 21 • W, between 44 • N and 50.5 • N, between March 15 and June 15, 2019, at a 1/4 • and a 1 day resolution). The ensemble analysis is based on prior ensemble statistics from a stochastic NEMO/PISCES simulator. Ocean colour observations are used as constraints to condition the 4D prior probability distribution. As compared to classic data assimilation, the simplification comes from the decoupling between the forward simulation using the complex modelling system and the update of the 4D ensemble to account for the observation constraint. The shortcomings and possible advantages of this approach for biogeochemical applications are discussed in the paper. The results show that it |
format | Report |
genre | North Atlantic |
genre_facet | North Atlantic |
id | ftunivsavoie:oai:HAL:hal-04307146v1 |
institution | Open Polar |
language | English |
op_collection_id | ftunivsavoie |
op_doi | https://doi.org/10.5194/egusphere-2023-2026 |
op_relation | info:eu-repo/semantics/altIdentifier/doi/10.5194/egusphere-2023-2026 hal-04307146 https://hal.science/hal-04307146 https://hal.science/hal-04307146/document https://hal.science/hal-04307146/file/egusphere-2023-2026.pdf doi:10.5194/egusphere-2023-2026 |
op_rights | info:eu-repo/semantics/OpenAccess |
op_source | https://hal.science/hal-04307146 2023 |
publishDate | 2023 |
publisher | HAL CCSD |
record_format | openpolar |
spelling | ftunivsavoie:oai:HAL:hal-04307146v1 2025-01-16T23:36:30+00:00 Ensemble analysis and forecast of ecosystem indicators in the North Atlantic using ocean colour observations and prior statistics from a stochastic NEMO/PISCES simulator Popov, Mikhail Brankart, Jean-Michel Capet, Arthur Cosme, Emmanuel Brasseur, Pierre Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) University of Liege Laboratoire des Écoulements Géophysiques et Industriels Grenoble (LEGI) Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) 2023-11-25 https://hal.science/hal-04307146 https://hal.science/hal-04307146/document https://hal.science/hal-04307146/file/egusphere-2023-2026.pdf https://doi.org/10.5194/egusphere-2023-2026 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/doi/10.5194/egusphere-2023-2026 hal-04307146 https://hal.science/hal-04307146 https://hal.science/hal-04307146/document https://hal.science/hal-04307146/file/egusphere-2023-2026.pdf doi:10.5194/egusphere-2023-2026 info:eu-repo/semantics/OpenAccess https://hal.science/hal-04307146 2023 [SDE]Environmental Sciences info:eu-repo/semantics/preprint Preprints, Working Papers, . 2023 ftunivsavoie https://doi.org/10.5194/egusphere-2023-2026 2024-04-11T00:26:22Z This study is anchored in the H2020 SEAMLESS project (www.seamlessproject.org), which aims to develop ensemble assimilation methods to be implemented in Copernicus Marine Service monitoring and forecasting systems, in order to operationally estimate a set of targeted ecosystem indicators in various regions, including uncertainty estimates. In this paper, a simplified approach is introduced to perform a 4D (space-time) ensemble analysis describing the evolution of the ocean ecosystem. An example application is provided, which covers a limited time period in a limited subregion of the North Atlantic (between 31 • W and 21 • W, between 44 • N and 50.5 • N, between March 15 and June 15, 2019, at a 1/4 • and a 1 day resolution). The ensemble analysis is based on prior ensemble statistics from a stochastic NEMO/PISCES simulator. Ocean colour observations are used as constraints to condition the 4D prior probability distribution. As compared to classic data assimilation, the simplification comes from the decoupling between the forward simulation using the complex modelling system and the update of the 4D ensemble to account for the observation constraint. The shortcomings and possible advantages of this approach for biogeochemical applications are discussed in the paper. The results show that it Report North Atlantic Université Savoie Mont Blanc: HAL |
spellingShingle | [SDE]Environmental Sciences Popov, Mikhail Brankart, Jean-Michel Capet, Arthur Cosme, Emmanuel Brasseur, Pierre Ensemble analysis and forecast of ecosystem indicators in the North Atlantic using ocean colour observations and prior statistics from a stochastic NEMO/PISCES simulator |
title | Ensemble analysis and forecast of ecosystem indicators in the North Atlantic using ocean colour observations and prior statistics from a stochastic NEMO/PISCES simulator |
title_full | Ensemble analysis and forecast of ecosystem indicators in the North Atlantic using ocean colour observations and prior statistics from a stochastic NEMO/PISCES simulator |
title_fullStr | Ensemble analysis and forecast of ecosystem indicators in the North Atlantic using ocean colour observations and prior statistics from a stochastic NEMO/PISCES simulator |
title_full_unstemmed | Ensemble analysis and forecast of ecosystem indicators in the North Atlantic using ocean colour observations and prior statistics from a stochastic NEMO/PISCES simulator |
title_short | Ensemble analysis and forecast of ecosystem indicators in the North Atlantic using ocean colour observations and prior statistics from a stochastic NEMO/PISCES simulator |
title_sort | ensemble analysis and forecast of ecosystem indicators in the north atlantic using ocean colour observations and prior statistics from a stochastic nemo/pisces simulator |
topic | [SDE]Environmental Sciences |
topic_facet | [SDE]Environmental Sciences |
url | https://hal.science/hal-04307146 https://hal.science/hal-04307146/document https://hal.science/hal-04307146/file/egusphere-2023-2026.pdf https://doi.org/10.5194/egusphere-2023-2026 |