Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations

International audience SUMMARY About a decade ago, noise-based monitoring became a key tool in seismology. One of the tools is passive image interferometry (PII), which uses noise correlation functions (NCF) to retrieve seismic velocity variations. Most studies apply PII to vertical components recor...

Full description

Bibliographic Details
Published in:Geophysical Journal International
Main Authors: Steinmann, René, Hadziioannou, Céline, Larose, Eric
Other Authors: Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la Terre (ISTerre), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.science/hal-03384965
https://hal.science/hal-03384965v2/document
https://hal.science/hal-03384965v2/file/manuscript_final.pdf
https://doi.org/10.1093/gji/ggaa406
id ftunivsavoie:oai:HAL:hal-03384965v2
record_format openpolar
spelling ftunivsavoie:oai:HAL:hal-03384965v2 2024-04-21T08:10:22+00:00 Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations Steinmann, René Hadziioannou, Céline Larose, Eric Centre National de la Recherche Scientifique (CNRS) Institut des Sciences de la Terre (ISTerre) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA) 2021-01 https://hal.science/hal-03384965 https://hal.science/hal-03384965v2/document https://hal.science/hal-03384965v2/file/manuscript_final.pdf https://doi.org/10.1093/gji/ggaa406 en eng HAL CCSD Oxford University Press (OUP) info:eu-repo/semantics/altIdentifier/doi/10.1093/gji/ggaa406 hal-03384965 https://hal.science/hal-03384965 https://hal.science/hal-03384965v2/document https://hal.science/hal-03384965v2/file/manuscript_final.pdf doi:10.1093/gji/ggaa406 info:eu-repo/semantics/OpenAccess ISSN: 0956-540X EISSN: 1365-246X Geophysical Journal International https://hal.science/hal-03384965 Geophysical Journal International, 2021, 224 (1), pp.626-636. &#x27E8;10.1093/gji/ggaa406&#x27E9; [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment info:eu-repo/semantics/article Journal articles 2021 ftunivsavoie https://doi.org/10.1093/gji/ggaa406 2024-04-11T00:39:17Z International audience SUMMARY About a decade ago, noise-based monitoring became a key tool in seismology. One of the tools is passive image interferometry (PII), which uses noise correlation functions (NCF) to retrieve seismic velocity variations. Most studies apply PII to vertical components recording oceanic low-frequent ambient noise ( < 1 Hz). In this work, PII is applied to high-frequent urban ambient noise ( > 1 Hz) on three three-component sensors. With environmental sensors inside the subsurface and in the air, we are able to connect observed velocity variations with environmental parameters. Temperatures below 0 °C correlate well with strong shear wave velocity increases. The temperature sensors inside the ground suggest that a frozen layer of less than 5 cm thickness causes apparent velocity increases above 2 % , depending on the channel pair. The observations indicate that the different velocity variation retrieved from the different channel pairs are due to different surface wave responses inherent in the channel pairs. With dispersion curve modelling in a 1-D medium we can verify that surfaces waves of several tens of metres wavelength experience a velocity increase of several percent due to a centimetres thick frozen layer. Moreover, the model verifies that Love waves show larger velocity increases than Rayleigh waves. The findings of this study provide new insights for monitoring with PII. A few days with temperature below 0 °C can already mask other potential targets (e.g. faults or storage sites). Here, we suggest to use vertical components, which is less sensitive to the frozen layer at the surface. If the target is the seasonal freezing, like in permafrost studies, we suggest to use three-component sensors in order to retrieve the Love wave response. This opens the possibility to study other small-scale processes at the shallow subsurface with surface wave responses. Article in Journal/Newspaper permafrost Université Savoie Mont Blanc: HAL Geophysical Journal International 224 1 626 636
institution Open Polar
collection Université Savoie Mont Blanc: HAL
op_collection_id ftunivsavoie
language English
topic [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
spellingShingle [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
Steinmann, René
Hadziioannou, Céline
Larose, Eric
Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations
topic_facet [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
description International audience SUMMARY About a decade ago, noise-based monitoring became a key tool in seismology. One of the tools is passive image interferometry (PII), which uses noise correlation functions (NCF) to retrieve seismic velocity variations. Most studies apply PII to vertical components recording oceanic low-frequent ambient noise ( < 1 Hz). In this work, PII is applied to high-frequent urban ambient noise ( > 1 Hz) on three three-component sensors. With environmental sensors inside the subsurface and in the air, we are able to connect observed velocity variations with environmental parameters. Temperatures below 0 °C correlate well with strong shear wave velocity increases. The temperature sensors inside the ground suggest that a frozen layer of less than 5 cm thickness causes apparent velocity increases above 2 % , depending on the channel pair. The observations indicate that the different velocity variation retrieved from the different channel pairs are due to different surface wave responses inherent in the channel pairs. With dispersion curve modelling in a 1-D medium we can verify that surfaces waves of several tens of metres wavelength experience a velocity increase of several percent due to a centimetres thick frozen layer. Moreover, the model verifies that Love waves show larger velocity increases than Rayleigh waves. The findings of this study provide new insights for monitoring with PII. A few days with temperature below 0 °C can already mask other potential targets (e.g. faults or storage sites). Here, we suggest to use vertical components, which is less sensitive to the frozen layer at the surface. If the target is the seasonal freezing, like in permafrost studies, we suggest to use three-component sensors in order to retrieve the Love wave response. This opens the possibility to study other small-scale processes at the shallow subsurface with surface wave responses.
author2 Centre National de la Recherche Scientifique (CNRS)
Institut des Sciences de la Terre (ISTerre)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA)
format Article in Journal/Newspaper
author Steinmann, René
Hadziioannou, Céline
Larose, Eric
author_facet Steinmann, René
Hadziioannou, Céline
Larose, Eric
author_sort Steinmann, René
title Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations
title_short Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations
title_full Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations
title_fullStr Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations
title_full_unstemmed Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations
title_sort effect of centimetric freezing of the near subsurface on rayleigh and love wave velocity in ambient seismic noise correlations
publisher HAL CCSD
publishDate 2021
url https://hal.science/hal-03384965
https://hal.science/hal-03384965v2/document
https://hal.science/hal-03384965v2/file/manuscript_final.pdf
https://doi.org/10.1093/gji/ggaa406
genre permafrost
genre_facet permafrost
op_source ISSN: 0956-540X
EISSN: 1365-246X
Geophysical Journal International
https://hal.science/hal-03384965
Geophysical Journal International, 2021, 224 (1), pp.626-636. &#x27E8;10.1093/gji/ggaa406&#x27E9;
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1093/gji/ggaa406
hal-03384965
https://hal.science/hal-03384965
https://hal.science/hal-03384965v2/document
https://hal.science/hal-03384965v2/file/manuscript_final.pdf
doi:10.1093/gji/ggaa406
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1093/gji/ggaa406
container_title Geophysical Journal International
container_volume 224
container_issue 1
container_start_page 626
op_container_end_page 636
_version_ 1796951799198908416