Intrinsic Variability of Sea Level from Global 1 / 12°Ocean Simulations: Spatiotemporal Scales

International audience In high-resolution ocean general circulation models (OGCMs), as in process-oriented models, a substantial amount of interannual to decadal variability is generated spontaneously by oceanic nonlinearities: that is, without any variability in the atmospheric forcing at these tim...

Full description

Bibliographic Details
Published in:Journal of Climate
Main Authors: Sérazin, Guillaume, Penduff, Thierry, Grégorio, Sandy, Barnier, Bernard, Molines, Jean-Marc, Terray, Laurent
Other Authors: Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2015
Subjects:
Online Access:https://hal.science/hal-02879801
https://hal.science/hal-02879801/document
https://hal.science/hal-02879801/file/Serazin2015.pdf
https://doi.org/10.1175/JCLI-D-14-00554.1
id ftunivsavoie:oai:HAL:hal-02879801v1
record_format openpolar
institution Open Polar
collection Université Savoie Mont Blanc: HAL
op_collection_id ftunivsavoie
language English
topic [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
spellingShingle [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
Sérazin, Guillaume
Penduff, Thierry
Grégorio, Sandy
Barnier, Bernard
Molines, Jean-Marc
Terray, Laurent
Intrinsic Variability of Sea Level from Global 1 / 12°Ocean Simulations: Spatiotemporal Scales
topic_facet [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
description International audience In high-resolution ocean general circulation models (OGCMs), as in process-oriented models, a substantial amount of interannual to decadal variability is generated spontaneously by oceanic nonlinearities: that is, without any variability in the atmospheric forcing at these time scales. The authors investigate the temporal and spatial scales at which this intrinsic oceanic variability has the strongest imprints on sea level anomalies (SLAs) using a 1 /128 global OGCM, by comparing a ''hindcast'' driven by the full range of atmospheric time scales with its counterpart forced by a repeated climatological atmospheric seasonal cycle. Outputs from both simulations are compared within distinct frequency-wavenumber bins. The fully forced hindcast is shown to reproduce the observed distribution and magnitude of low-frequency SLA variability very accurately. The small-scale (L , 68) SLA variance is, at all time scales, barely sensitive to atmospheric variability and is almost entirely of intrinsic origin. The high-frequency (mesoscale) part and the low-frequency part of this small-scale variability have almost identical geographical distributions, supporting the hypothesis of a nonlinear temporal inverse cascade spontaneously transferring kinetic energy from high to low frequencies. The large-scale (L , 128) low-frequency variability is mostly related to the atmospheric variability over most of the global ocean, but it is shown to remain largely intrinsic in three eddy-active regions: the Gulf Stream, Kuroshio, and Antarctic Circumpolar Current (ACC). Compared to its 1 /48 predecessor, the authors' 1 /128 OGCM is shown to yield a stronger intrinsic SLA variability, at both mesoscale and low frequencies.
author2 Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Observatoire des Sciences de l'Univers de Grenoble (OSUG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS)
format Article in Journal/Newspaper
author Sérazin, Guillaume
Penduff, Thierry
Grégorio, Sandy
Barnier, Bernard
Molines, Jean-Marc
Terray, Laurent
author_facet Sérazin, Guillaume
Penduff, Thierry
Grégorio, Sandy
Barnier, Bernard
Molines, Jean-Marc
Terray, Laurent
author_sort Sérazin, Guillaume
title Intrinsic Variability of Sea Level from Global 1 / 12°Ocean Simulations: Spatiotemporal Scales
title_short Intrinsic Variability of Sea Level from Global 1 / 12°Ocean Simulations: Spatiotemporal Scales
title_full Intrinsic Variability of Sea Level from Global 1 / 12°Ocean Simulations: Spatiotemporal Scales
title_fullStr Intrinsic Variability of Sea Level from Global 1 / 12°Ocean Simulations: Spatiotemporal Scales
title_full_unstemmed Intrinsic Variability of Sea Level from Global 1 / 12°Ocean Simulations: Spatiotemporal Scales
title_sort intrinsic variability of sea level from global 1 / 12°ocean simulations: spatiotemporal scales
publisher HAL CCSD
publishDate 2015
url https://hal.science/hal-02879801
https://hal.science/hal-02879801/document
https://hal.science/hal-02879801/file/Serazin2015.pdf
https://doi.org/10.1175/JCLI-D-14-00554.1
geographic Antarctic
geographic_facet Antarctic
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source ISSN: 0894-8755
EISSN: 1520-0442
Journal of Climate
https://hal.science/hal-02879801
Journal of Climate, 2015, ⟨10.1175/JCLI-D-14-00554.1⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1175/JCLI-D-14-00554.1
hal-02879801
https://hal.science/hal-02879801
https://hal.science/hal-02879801/document
https://hal.science/hal-02879801/file/Serazin2015.pdf
doi:10.1175/JCLI-D-14-00554.1
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1175/JCLI-D-14-00554.1
container_title Journal of Climate
container_volume 28
container_issue 10
container_start_page 4279
op_container_end_page 4292
_version_ 1798834211738615808
spelling ftunivsavoie:oai:HAL:hal-02879801v1 2024-05-12T07:55:07+00:00 Intrinsic Variability of Sea Level from Global 1 / 12°Ocean Simulations: Spatiotemporal Scales Sérazin, Guillaume Penduff, Thierry Grégorio, Sandy Barnier, Bernard Molines, Jean-Marc Terray, Laurent Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS) 2015 https://hal.science/hal-02879801 https://hal.science/hal-02879801/document https://hal.science/hal-02879801/file/Serazin2015.pdf https://doi.org/10.1175/JCLI-D-14-00554.1 en eng HAL CCSD American Meteorological Society info:eu-repo/semantics/altIdentifier/doi/10.1175/JCLI-D-14-00554.1 hal-02879801 https://hal.science/hal-02879801 https://hal.science/hal-02879801/document https://hal.science/hal-02879801/file/Serazin2015.pdf doi:10.1175/JCLI-D-14-00554.1 info:eu-repo/semantics/OpenAccess ISSN: 0894-8755 EISSN: 1520-0442 Journal of Climate https://hal.science/hal-02879801 Journal of Climate, 2015, ⟨10.1175/JCLI-D-14-00554.1⟩ [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography info:eu-repo/semantics/article Journal articles 2015 ftunivsavoie https://doi.org/10.1175/JCLI-D-14-00554.1 2024-04-18T00:31:25Z International audience In high-resolution ocean general circulation models (OGCMs), as in process-oriented models, a substantial amount of interannual to decadal variability is generated spontaneously by oceanic nonlinearities: that is, without any variability in the atmospheric forcing at these time scales. The authors investigate the temporal and spatial scales at which this intrinsic oceanic variability has the strongest imprints on sea level anomalies (SLAs) using a 1 /128 global OGCM, by comparing a ''hindcast'' driven by the full range of atmospheric time scales with its counterpart forced by a repeated climatological atmospheric seasonal cycle. Outputs from both simulations are compared within distinct frequency-wavenumber bins. The fully forced hindcast is shown to reproduce the observed distribution and magnitude of low-frequency SLA variability very accurately. The small-scale (L , 68) SLA variance is, at all time scales, barely sensitive to atmospheric variability and is almost entirely of intrinsic origin. The high-frequency (mesoscale) part and the low-frequency part of this small-scale variability have almost identical geographical distributions, supporting the hypothesis of a nonlinear temporal inverse cascade spontaneously transferring kinetic energy from high to low frequencies. The large-scale (L , 128) low-frequency variability is mostly related to the atmospheric variability over most of the global ocean, but it is shown to remain largely intrinsic in three eddy-active regions: the Gulf Stream, Kuroshio, and Antarctic Circumpolar Current (ACC). Compared to its 1 /48 predecessor, the authors' 1 /128 OGCM is shown to yield a stronger intrinsic SLA variability, at both mesoscale and low frequencies. Article in Journal/Newspaper Antarc* Antarctic Université Savoie Mont Blanc: HAL Antarctic Journal of Climate 28 10 4279 4292