An analysis of the nonlinear magma-edifice coupling at Grimsvötn volcano (Iceland)

International audience Continuous monitoring of seismicity and surface displacement of active volcanoes can reveal important features of the eruptive cycle. Here high-quality GPS and earthquake data recorded at Grimsvotn volcano by the Icelandic Meteorological Office during the 2004-2011 intererupti...

Full description

Bibliographic Details
Main Authors: Got, Jean-Luc, Carrier, Aurore, Marsan, David, Jouanne, François, Vogfjörd, Kristin, Villemin, Thierry
Other Authors: Géophysique des volcans & géothermie, Institut des Sciences de la Terre (ISTerre), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Environnements, Dynamiques et Territoires de Montagne (EDYTEM), Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://hal.science/hal-02009118
https://hal.science/hal-02009118/document
https://hal.science/hal-02009118/file/2016JB012905.pdf
id ftunivsavoie:oai:HAL:hal-02009118v1
record_format openpolar
institution Open Polar
collection Université Savoie Mont Blanc: HAL
op_collection_id ftunivsavoie
language English
topic [SDE.MCG]Environmental Sciences/Global Changes
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
[SDE.IE]Environmental Sciences/Environmental Engineering
[SDE.ES]Environmental Sciences/Environment and Society
[SHS.GEO]Humanities and Social Sciences/Geography
spellingShingle [SDE.MCG]Environmental Sciences/Global Changes
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
[SDE.IE]Environmental Sciences/Environmental Engineering
[SDE.ES]Environmental Sciences/Environment and Society
[SHS.GEO]Humanities and Social Sciences/Geography
Got, Jean-Luc
Carrier, Aurore
Marsan, David
Jouanne, François
Vogfjörd, Kristin
Villemin, Thierry
An analysis of the nonlinear magma-edifice coupling at Grimsvötn volcano (Iceland)
topic_facet [SDE.MCG]Environmental Sciences/Global Changes
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
[SDE.IE]Environmental Sciences/Environmental Engineering
[SDE.ES]Environmental Sciences/Environment and Society
[SHS.GEO]Humanities and Social Sciences/Geography
description International audience Continuous monitoring of seismicity and surface displacement of active volcanoes can reveal important features of the eruptive cycle. Here high-quality GPS and earthquake data recorded at Grimsvotn volcano by the Icelandic Meteorological Office during the 2004-2011 intereruptive period are analyzed. These showed a characteristic pattern, with an initial similar to 2 year long exponential decay followed by similar to 3 year long constant surface displacement inflation rate. We model it by using a one magma reservoir model in an elastic damaging edifice, with incompressible magma and constant pressure at the base of the magma conduit. Seismicity rate and damage were first modeled, and simple analytical expressions were derived for the magma reservoir overpressure and surface displacement as functions of time. Very good fits of the seismicity and surface displacement data were obtained by fitting only three phenomenological parameters. Characteristic time and power strain show maxima from which reference times were inferred that split the intereruptive period into five periods. After the pressurization periods, damage occurring in the third period induced weakly nonlinear variations in magma overpressure and flow, and surface displacement. During the fourth period, the damage dominated and variations became more strongly nonlinear, the reservoir overpressure decreased, and magma flow increased. This process lasted until the power strain reached its second maximum, where instability was generalized. This maximum is a physical limit, the occurrence of which shortly precedes rupture and, eventually, eruption. This analysis allows characterization of the state of the volcanic edifice during the intereruptive period and supports medium-term prediction of rupture and eruption.
author2 Géophysique des volcans & géothermie
Institut des Sciences de la Terre (ISTerre)
Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Environnements, Dynamiques et Territoires de Montagne (EDYTEM)
Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Got, Jean-Luc
Carrier, Aurore
Marsan, David
Jouanne, François
Vogfjörd, Kristin
Villemin, Thierry
author_facet Got, Jean-Luc
Carrier, Aurore
Marsan, David
Jouanne, François
Vogfjörd, Kristin
Villemin, Thierry
author_sort Got, Jean-Luc
title An analysis of the nonlinear magma-edifice coupling at Grimsvötn volcano (Iceland)
title_short An analysis of the nonlinear magma-edifice coupling at Grimsvötn volcano (Iceland)
title_full An analysis of the nonlinear magma-edifice coupling at Grimsvötn volcano (Iceland)
title_fullStr An analysis of the nonlinear magma-edifice coupling at Grimsvötn volcano (Iceland)
title_full_unstemmed An analysis of the nonlinear magma-edifice coupling at Grimsvötn volcano (Iceland)
title_sort analysis of the nonlinear magma-edifice coupling at grimsvötn volcano (iceland)
publisher HAL CCSD
publishDate 2017
url https://hal.science/hal-02009118
https://hal.science/hal-02009118/document
https://hal.science/hal-02009118/file/2016JB012905.pdf
genre Iceland
genre_facet Iceland
op_source ISSN: 2169-9313
EISSN: 2169-9356
Journal of Geophysical Research : Solid Earth
https://hal.science/hal-02009118
Journal of Geophysical Research : Solid Earth, 2017, 122 (2), pp.826-843
op_relation hal-02009118
https://hal.science/hal-02009118
https://hal.science/hal-02009118/document
https://hal.science/hal-02009118/file/2016JB012905.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1799482665857974272
spelling ftunivsavoie:oai:HAL:hal-02009118v1 2024-05-19T07:42:58+00:00 An analysis of the nonlinear magma-edifice coupling at Grimsvötn volcano (Iceland) Got, Jean-Luc Carrier, Aurore Marsan, David Jouanne, François Vogfjörd, Kristin Villemin, Thierry Géophysique des volcans & géothermie Institut des Sciences de la Terre (ISTerre) Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Environnements, Dynamiques et Territoires de Montagne (EDYTEM) Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS) 2017-02 https://hal.science/hal-02009118 https://hal.science/hal-02009118/document https://hal.science/hal-02009118/file/2016JB012905.pdf en eng HAL CCSD American Geophysical Union hal-02009118 https://hal.science/hal-02009118 https://hal.science/hal-02009118/document https://hal.science/hal-02009118/file/2016JB012905.pdf info:eu-repo/semantics/OpenAccess ISSN: 2169-9313 EISSN: 2169-9356 Journal of Geophysical Research : Solid Earth https://hal.science/hal-02009118 Journal of Geophysical Research : Solid Earth, 2017, 122 (2), pp.826-843 [SDE.MCG]Environmental Sciences/Global Changes [SDE.BE]Environmental Sciences/Biodiversity and Ecology [SDE.IE]Environmental Sciences/Environmental Engineering [SDE.ES]Environmental Sciences/Environment and Society [SHS.GEO]Humanities and Social Sciences/Geography info:eu-repo/semantics/article Journal articles 2017 ftunivsavoie 2024-05-02T00:13:29Z International audience Continuous monitoring of seismicity and surface displacement of active volcanoes can reveal important features of the eruptive cycle. Here high-quality GPS and earthquake data recorded at Grimsvotn volcano by the Icelandic Meteorological Office during the 2004-2011 intereruptive period are analyzed. These showed a characteristic pattern, with an initial similar to 2 year long exponential decay followed by similar to 3 year long constant surface displacement inflation rate. We model it by using a one magma reservoir model in an elastic damaging edifice, with incompressible magma and constant pressure at the base of the magma conduit. Seismicity rate and damage were first modeled, and simple analytical expressions were derived for the magma reservoir overpressure and surface displacement as functions of time. Very good fits of the seismicity and surface displacement data were obtained by fitting only three phenomenological parameters. Characteristic time and power strain show maxima from which reference times were inferred that split the intereruptive period into five periods. After the pressurization periods, damage occurring in the third period induced weakly nonlinear variations in magma overpressure and flow, and surface displacement. During the fourth period, the damage dominated and variations became more strongly nonlinear, the reservoir overpressure decreased, and magma flow increased. This process lasted until the power strain reached its second maximum, where instability was generalized. This maximum is a physical limit, the occurrence of which shortly precedes rupture and, eventually, eruption. This analysis allows characterization of the state of the volcanic edifice during the intereruptive period and supports medium-term prediction of rupture and eruption. Article in Journal/Newspaper Iceland Université Savoie Mont Blanc: HAL