Snow control on active layer thickness in steep alpine rock walls (Aiguille du Midi, 3842 m a.s.l., Mont Blanc massif)

International audience Since the early 2000s, a remarkable amount of rockfalls has been observed in permafrost areas of the mid-latitude mountain ranges concurrently to hot summers. This study explores the seasonal thaw (ST) in permafrost rock walls of the Aiguille du Midi site (3842 m a.s.l., Mont...

Full description

Bibliographic Details
Published in:CATENA
Main Authors: Magnin, Florence, Westermann, Sebastien, Pogliotti, Paolo, Ravanel, Ludovic, Deline, Philip, Malet, Emmanuel
Other Authors: Environnements, Dynamiques et Territoires de Montagne (EDYTEM), Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS), Department of Geosciences Oslo, Faculty of Mathematics and Natural Sciences Oslo, University of Oslo (UiO)-University of Oslo (UiO)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://sde.hal.science/hal-01778287
https://doi.org/10.1016/j.catena.2016.06.006
id ftunivsavoie:oai:HAL:hal-01778287v1
record_format openpolar
spelling ftunivsavoie:oai:HAL:hal-01778287v1 2024-04-28T07:53:17+00:00 Snow control on active layer thickness in steep alpine rock walls (Aiguille du Midi, 3842 m a.s.l., Mont Blanc massif) Magnin, Florence Westermann, Sebastien Pogliotti, Paolo Ravanel, Ludovic Deline, Philip Malet, Emmanuel Environnements, Dynamiques et Territoires de Montagne (EDYTEM) Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS) Department of Geosciences Oslo Faculty of Mathematics and Natural Sciences Oslo University of Oslo (UiO)-University of Oslo (UiO) 2017-02 https://sde.hal.science/hal-01778287 https://doi.org/10.1016/j.catena.2016.06.006 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.catena.2016.06.006 hal-01778287 https://sde.hal.science/hal-01778287 doi:10.1016/j.catena.2016.06.006 http://creativecommons.org/licenses/by-nc-nd/ ISSN: 0341-8162 CATENA https://sde.hal.science/hal-01778287 CATENA, 2017, 149 (2), pp.648-662. ⟨10.1016/j.catena.2016.06.006⟩ Energy balance modelling Bedrock temperature monitoring Active layer Rock wall permafrost Snow [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2017 ftunivsavoie https://doi.org/10.1016/j.catena.2016.06.006 2024-04-11T00:55:08Z International audience Since the early 2000s, a remarkable amount of rockfalls has been observed in permafrost areas of the mid-latitude mountain ranges concurrently to hot summers. This study explores the seasonal thaw (ST) in permafrost rock walls of the Aiguille du Midi site (3842 m a.s.l., Mont Blanc massif). We first analyse six years of temperature records in three 10 m-deep boreholes against air temperature (AT) and a four-year time series of pictures showing the snow conditions on two rock faces. Then, we test the sensitivity of the active layer against eight snow fall scenarios using the 1-D surface energy balance and heat conduction model CryoGrid 3 forced by in-situ measurements from a vertical face. Snow falls occur all the year round at this elevation and play an important role for the active layer thickness (ALT), but the snow cover and its control are highly heterogeneous. A long-lasting of a snow cover during spring/early summer delays the ST and reduces the ALT. The thicker and the more spatially-continuous is the snow cover, the stronger are the delay and ALT reduction. Convective clouds could also reinforce this pattern. The summer AT and heat waves are the dominant controlling factors of the ALT. But summer snow falls can sometimes persist for several days on the rock surface and reduce the effect of the heat waves. Active layer can thicken during the early fall, except if the snow starts to accumulate on the rock surface and favours the refreezing. The timing of the snow fall is the most critical parameter to determine the snow effect on the ALT. This study suggests that the characteristics of the bedrock and snow accumulation (steepness, surface roughness, and sun-exposure) must be taken into account to better understand the formation and changes of the active layer and its possible implications for rockfall triggering. Article in Journal/Newspaper Active layer thickness permafrost Université Savoie Mont Blanc: HAL CATENA 149 648 662
institution Open Polar
collection Université Savoie Mont Blanc: HAL
op_collection_id ftunivsavoie
language English
topic Energy balance modelling
Bedrock
temperature monitoring
Active layer
Rock wall permafrost
Snow
[SDE]Environmental Sciences
spellingShingle Energy balance modelling
Bedrock
temperature monitoring
Active layer
Rock wall permafrost
Snow
[SDE]Environmental Sciences
Magnin, Florence
Westermann, Sebastien
Pogliotti, Paolo
Ravanel, Ludovic
Deline, Philip
Malet, Emmanuel
Snow control on active layer thickness in steep alpine rock walls (Aiguille du Midi, 3842 m a.s.l., Mont Blanc massif)
topic_facet Energy balance modelling
Bedrock
temperature monitoring
Active layer
Rock wall permafrost
Snow
[SDE]Environmental Sciences
description International audience Since the early 2000s, a remarkable amount of rockfalls has been observed in permafrost areas of the mid-latitude mountain ranges concurrently to hot summers. This study explores the seasonal thaw (ST) in permafrost rock walls of the Aiguille du Midi site (3842 m a.s.l., Mont Blanc massif). We first analyse six years of temperature records in three 10 m-deep boreholes against air temperature (AT) and a four-year time series of pictures showing the snow conditions on two rock faces. Then, we test the sensitivity of the active layer against eight snow fall scenarios using the 1-D surface energy balance and heat conduction model CryoGrid 3 forced by in-situ measurements from a vertical face. Snow falls occur all the year round at this elevation and play an important role for the active layer thickness (ALT), but the snow cover and its control are highly heterogeneous. A long-lasting of a snow cover during spring/early summer delays the ST and reduces the ALT. The thicker and the more spatially-continuous is the snow cover, the stronger are the delay and ALT reduction. Convective clouds could also reinforce this pattern. The summer AT and heat waves are the dominant controlling factors of the ALT. But summer snow falls can sometimes persist for several days on the rock surface and reduce the effect of the heat waves. Active layer can thicken during the early fall, except if the snow starts to accumulate on the rock surface and favours the refreezing. The timing of the snow fall is the most critical parameter to determine the snow effect on the ALT. This study suggests that the characteristics of the bedrock and snow accumulation (steepness, surface roughness, and sun-exposure) must be taken into account to better understand the formation and changes of the active layer and its possible implications for rockfall triggering.
author2 Environnements, Dynamiques et Territoires de Montagne (EDYTEM)
Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)
Department of Geosciences Oslo
Faculty of Mathematics and Natural Sciences Oslo
University of Oslo (UiO)-University of Oslo (UiO)
format Article in Journal/Newspaper
author Magnin, Florence
Westermann, Sebastien
Pogliotti, Paolo
Ravanel, Ludovic
Deline, Philip
Malet, Emmanuel
author_facet Magnin, Florence
Westermann, Sebastien
Pogliotti, Paolo
Ravanel, Ludovic
Deline, Philip
Malet, Emmanuel
author_sort Magnin, Florence
title Snow control on active layer thickness in steep alpine rock walls (Aiguille du Midi, 3842 m a.s.l., Mont Blanc massif)
title_short Snow control on active layer thickness in steep alpine rock walls (Aiguille du Midi, 3842 m a.s.l., Mont Blanc massif)
title_full Snow control on active layer thickness in steep alpine rock walls (Aiguille du Midi, 3842 m a.s.l., Mont Blanc massif)
title_fullStr Snow control on active layer thickness in steep alpine rock walls (Aiguille du Midi, 3842 m a.s.l., Mont Blanc massif)
title_full_unstemmed Snow control on active layer thickness in steep alpine rock walls (Aiguille du Midi, 3842 m a.s.l., Mont Blanc massif)
title_sort snow control on active layer thickness in steep alpine rock walls (aiguille du midi, 3842 m a.s.l., mont blanc massif)
publisher HAL CCSD
publishDate 2017
url https://sde.hal.science/hal-01778287
https://doi.org/10.1016/j.catena.2016.06.006
genre Active layer thickness
permafrost
genre_facet Active layer thickness
permafrost
op_source ISSN: 0341-8162
CATENA
https://sde.hal.science/hal-01778287
CATENA, 2017, 149 (2), pp.648-662. ⟨10.1016/j.catena.2016.06.006⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.catena.2016.06.006
hal-01778287
https://sde.hal.science/hal-01778287
doi:10.1016/j.catena.2016.06.006
op_rights http://creativecommons.org/licenses/by-nc-nd/
op_doi https://doi.org/10.1016/j.catena.2016.06.006
container_title CATENA
container_volume 149
container_start_page 648
op_container_end_page 662
_version_ 1797588314237173760