Constraining N20 emissions since 1940 using firn air isotope measurements in both hemispheres

International audience Abstract. N2O is currently the third most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes over the past decades, we performed a multi-site reconstruction of th...

Full description

Bibliographic Details
Main Authors: Prokopiou, Markella, Martinerie, Patricia, Sapart, Célia, Witrant, Emmanuel, Monteil, Guillaume, Ishijima, Kentaro, Bernard, Sophie, Kaiser, Jan, Levin, Ingeborg, Sowers, T., Blunier, Thomas, Etheridge, David, Dlugokencky, E., van de Wal, Roderik, Röckmann, Thomas
Other Authors: Institute for Marine and Atmospheric Research Utrecht (IMAU), Universiteit Utrecht / Utrecht University Utrecht, Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Université libre de Bruxelles (ULB), GIPSA - Systèmes linéaires et robustesse (GIPSA-SLR), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Lund University, National Institute of Polar Research Tokyo (NiPR), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), University of East Anglia Norwich (UEA), Universität Heidelberg Heidelberg = Heidelberg University, Earth and Environmental Systems Institute PennState (EESI), Pennsylvania State University (Penn State), Penn State System-Penn State System, Niels Bohr Institute Copenhagen (NBI), Faculty of Science Copenhagen, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), CSIRO Marine and Atmospheric Research (CSIRO-MAR), Commonwealth Scientific and Industrial Research Organisation Canberra (CSIRO), NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://hal.science/hal-01411421
https://hal.science/hal-01411421/document
https://hal.science/hal-01411421/file/acp-2016-487.pdf
https://doi.org/10.5194/acp-2016-487
id ftunivsavoie:oai:HAL:hal-01411421v1
record_format openpolar
institution Open Polar
collection Université Savoie Mont Blanc: HAL
op_collection_id ftunivsavoie
language English
topic [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
[SPI.AUTO]Engineering Sciences [physics]/Automatic
spellingShingle [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
[SPI.AUTO]Engineering Sciences [physics]/Automatic
Prokopiou, Markella
Martinerie, Patricia
Sapart, Célia
Witrant, Emmanuel
Monteil, Guillaume
Ishijima, Kentaro
Bernard, Sophie
Kaiser, Jan
Levin, Ingeborg
Sowers, T.
Blunier, Thomas
Etheridge, David
Dlugokencky, E.
van de Wal, Roderik
Röckmann, Thomas
Constraining N20 emissions since 1940 using firn air isotope measurements in both hemispheres
topic_facet [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
[SPI.AUTO]Engineering Sciences [physics]/Automatic
description International audience Abstract. N2O is currently the third most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes over the past decades, we performed a multi-site reconstruction of the atmospheric N2O mole fraction and isotopic composition using new and previously published firn air data collected from Greenland and Antarctica in combination with a firn diffusion and densification model. The multi-site reconstruction showed that while the global mean N2O mole fraction increased from (290 ± 1) nmol mol−1 in 1940 to (322 ± 1) nmol mol−1 in 2008, the isotopic composition of atmospheric N2O decreased by (−2.2 ± 0.2) ‰ for δ15Nav, (−1.0 ± 0.3) ‰ for δ18O, (−1.3 ± 0.6) ‰ for δ15Nα, and (−2.8 ± 0.6) ‰ for δ15Nβ over the same period. The detailed temporal evolution of the mole fraction and isotopic composition derived from the firn air model was then used in a two-box atmospheric model (comprising a stratospheric box and a tropospheric box) to infer changes in the isotopic source signature over time. The precise value of the source strength depends on the choice of the N2O lifetime, which we choose to fix at 123 years. The average isotopic composition over the investigated period is δ15Nav = (−7.6 ± 0.8) ‰ (vs. air-N2), δ18O = (32.2 ± 0.2) ‰ (vs. Vienna Standard Mean Ocean Water – VSMOW) for δ18O, δ15Nα = (−3.0 ± 1.9) ‰ and δ15Nβ = (−11.7 ± 2.3) ‰. δ15Nav, and δ15Nβ show some temporal variability, while for the other signatures the error bars of the reconstruction are too large to retrieve reliable temporal changes. Possible processes that may explain trends in 15N are discussed. The 15N site preference ( = δ15Nα − δ15Nβ) provides evidence of a shift in emissions from denitrification to nitrification, although the uncertainty envelopes are large.
author2 Institute for Marine and Atmospheric Research Utrecht (IMAU)
Universiteit Utrecht / Utrecht University Utrecht
Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Université libre de Bruxelles (ULB)
GIPSA - Systèmes linéaires et robustesse (GIPSA-SLR)
Département Automatique (GIPSA-DA)
Grenoble Images Parole Signal Automatique (GIPSA-lab )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Grenoble Images Parole Signal Automatique (GIPSA-lab )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Lund University
National Institute of Polar Research Tokyo (NiPR)
Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
University of East Anglia Norwich (UEA)
Universität Heidelberg Heidelberg = Heidelberg University
Earth and Environmental Systems Institute PennState (EESI)
Pennsylvania State University (Penn State)
Penn State System-Penn State System
Niels Bohr Institute Copenhagen (NBI)
Faculty of Science Copenhagen
University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)
CSIRO Marine and Atmospheric Research (CSIRO-MAR)
Commonwealth Scientific and Industrial Research Organisation Canberra (CSIRO)
NOAA Earth System Research Laboratory (ESRL)
National Oceanic and Atmospheric Administration (NOAA)
format Article in Journal/Newspaper
author Prokopiou, Markella
Martinerie, Patricia
Sapart, Célia
Witrant, Emmanuel
Monteil, Guillaume
Ishijima, Kentaro
Bernard, Sophie
Kaiser, Jan
Levin, Ingeborg
Sowers, T.
Blunier, Thomas
Etheridge, David
Dlugokencky, E.
van de Wal, Roderik
Röckmann, Thomas
author_facet Prokopiou, Markella
Martinerie, Patricia
Sapart, Célia
Witrant, Emmanuel
Monteil, Guillaume
Ishijima, Kentaro
Bernard, Sophie
Kaiser, Jan
Levin, Ingeborg
Sowers, T.
Blunier, Thomas
Etheridge, David
Dlugokencky, E.
van de Wal, Roderik
Röckmann, Thomas
author_sort Prokopiou, Markella
title Constraining N20 emissions since 1940 using firn air isotope measurements in both hemispheres
title_short Constraining N20 emissions since 1940 using firn air isotope measurements in both hemispheres
title_full Constraining N20 emissions since 1940 using firn air isotope measurements in both hemispheres
title_fullStr Constraining N20 emissions since 1940 using firn air isotope measurements in both hemispheres
title_full_unstemmed Constraining N20 emissions since 1940 using firn air isotope measurements in both hemispheres
title_sort constraining n20 emissions since 1940 using firn air isotope measurements in both hemispheres
publisher HAL CCSD
publishDate 2016
url https://hal.science/hal-01411421
https://hal.science/hal-01411421/document
https://hal.science/hal-01411421/file/acp-2016-487.pdf
https://doi.org/10.5194/acp-2016-487
genre Antarc*
Antarctica
Greenland
genre_facet Antarc*
Antarctica
Greenland
op_source ISSN: 1680-7367
EISSN: 1680-7375
Atmospheric Chemistry and Physics Discussions
https://hal.science/hal-01411421
Atmospheric Chemistry and Physics Discussions, 2016, ⟨10.5194/acp-2016-487⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-2016-487
hal-01411421
https://hal.science/hal-01411421
https://hal.science/hal-01411421/document
https://hal.science/hal-01411421/file/acp-2016-487.pdf
doi:10.5194/acp-2016-487
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/acp-2016-487
_version_ 1797573705903112192
spelling ftunivsavoie:oai:HAL:hal-01411421v1 2024-04-28T08:02:18+00:00 Constraining N20 emissions since 1940 using firn air isotope measurements in both hemispheres Prokopiou, Markella Martinerie, Patricia Sapart, Célia Witrant, Emmanuel Monteil, Guillaume Ishijima, Kentaro Bernard, Sophie Kaiser, Jan Levin, Ingeborg Sowers, T. Blunier, Thomas Etheridge, David Dlugokencky, E. van de Wal, Roderik Röckmann, Thomas Institute for Marine and Atmospheric Research Utrecht (IMAU) Universiteit Utrecht / Utrecht University Utrecht Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) Université libre de Bruxelles (ULB) GIPSA - Systèmes linéaires et robustesse (GIPSA-SLR) Département Automatique (GIPSA-DA) Grenoble Images Parole Signal Automatique (GIPSA-lab ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Grenoble Images Parole Signal Automatique (GIPSA-lab ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Lund University National Institute of Polar Research Tokyo (NiPR) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) University of East Anglia Norwich (UEA) Universität Heidelberg Heidelberg = Heidelberg University Earth and Environmental Systems Institute PennState (EESI) Pennsylvania State University (Penn State) Penn State System-Penn State System Niels Bohr Institute Copenhagen (NBI) Faculty of Science Copenhagen University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH) CSIRO Marine and Atmospheric Research (CSIRO-MAR) Commonwealth Scientific and Industrial Research Organisation Canberra (CSIRO) NOAA Earth System Research Laboratory (ESRL) National Oceanic and Atmospheric Administration (NOAA) 2016-06-21 https://hal.science/hal-01411421 https://hal.science/hal-01411421/document https://hal.science/hal-01411421/file/acp-2016-487.pdf https://doi.org/10.5194/acp-2016-487 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-2016-487 hal-01411421 https://hal.science/hal-01411421 https://hal.science/hal-01411421/document https://hal.science/hal-01411421/file/acp-2016-487.pdf doi:10.5194/acp-2016-487 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1680-7367 EISSN: 1680-7375 Atmospheric Chemistry and Physics Discussions https://hal.science/hal-01411421 Atmospheric Chemistry and Physics Discussions, 2016, ⟨10.5194/acp-2016-487⟩ [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology [SPI.AUTO]Engineering Sciences [physics]/Automatic info:eu-repo/semantics/article Journal articles 2016 ftunivsavoie https://doi.org/10.5194/acp-2016-487 2024-04-11T00:36:44Z International audience Abstract. N2O is currently the third most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes over the past decades, we performed a multi-site reconstruction of the atmospheric N2O mole fraction and isotopic composition using new and previously published firn air data collected from Greenland and Antarctica in combination with a firn diffusion and densification model. The multi-site reconstruction showed that while the global mean N2O mole fraction increased from (290 ± 1) nmol mol−1 in 1940 to (322 ± 1) nmol mol−1 in 2008, the isotopic composition of atmospheric N2O decreased by (−2.2 ± 0.2) ‰ for δ15Nav, (−1.0 ± 0.3) ‰ for δ18O, (−1.3 ± 0.6) ‰ for δ15Nα, and (−2.8 ± 0.6) ‰ for δ15Nβ over the same period. The detailed temporal evolution of the mole fraction and isotopic composition derived from the firn air model was then used in a two-box atmospheric model (comprising a stratospheric box and a tropospheric box) to infer changes in the isotopic source signature over time. The precise value of the source strength depends on the choice of the N2O lifetime, which we choose to fix at 123 years. The average isotopic composition over the investigated period is δ15Nav = (−7.6 ± 0.8) ‰ (vs. air-N2), δ18O = (32.2 ± 0.2) ‰ (vs. Vienna Standard Mean Ocean Water – VSMOW) for δ18O, δ15Nα = (−3.0 ± 1.9) ‰ and δ15Nβ = (−11.7 ± 2.3) ‰. δ15Nav, and δ15Nβ show some temporal variability, while for the other signatures the error bars of the reconstruction are too large to retrieve reliable temporal changes. Possible processes that may explain trends in 15N are discussed. The 15N site preference ( = δ15Nα − δ15Nβ) provides evidence of a shift in emissions from denitrification to nitrification, although the uncertainty envelopes are large. Article in Journal/Newspaper Antarc* Antarctica Greenland Université Savoie Mont Blanc: HAL