A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data
In this work the classification of Sentinel-3 Sea and Land Surface Temperature (S3-SLSTR) images with a focus on volcanic cloud detection through a Neural Networks (NNs) approach is presented.Since the hazardous nature of eruptions, a fast and reliable method to monitor the evolution of volcanic clo...
Published in: | IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium |
---|---|
Main Authors: | , , , , , , , , , , |
Other Authors: | , , , , , , , , , , |
Format: | Conference Object |
Language: | English |
Published: |
IEEE
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/2108/389851 https://doi.org/10.1109/IGARSS46834.2022.9883922 |
_version_ | 1831846696808611840 |
---|---|
author | Petracca I. De Santis D. Corradini S. Guerrieri L. Picchiani M. Merucci L. Stelitano D. Del Frate F. Prata F. Salvucci G. Schiavon G. |
author2 | Petracca, I De Santis, D Corradini, S Guerrieri, L Picchiani, M Merucci, L Stelitano, D Del Frate, F Prata, F Salvucci, G Schiavon, G |
author_facet | Petracca I. De Santis D. Corradini S. Guerrieri L. Picchiani M. Merucci L. Stelitano D. Del Frate F. Prata F. Salvucci G. Schiavon G. |
author_sort | Petracca I. |
collection | Universitá degli Studi di Roma "Tor Vergata": ART - Archivio Istituzionale della Ricerca |
container_start_page | 7344 |
container_title | IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium |
description | In this work the classification of Sentinel-3 Sea and Land Surface Temperature (S3-SLSTR) images with a focus on volcanic cloud detection through a Neural Networks (NNs) approach is presented.Since the hazardous nature of eruptions, a fast and reliable method to monitor the evolution of volcanic clouds in real time is of primary interest. NNs represent a suitable tool for this purpose given their short processing time once trained, and their ability to solve complex problems as those related to natural events.The present research starts from the generation of the training patterns by means of MODerate resolution Imaging Spectroradiometer (MODIS) data collected during the 2010 Eyjafjallajokull (Iceland) eruption, it goes through the training of the NN, and ends with the application of the NN-based model to SLSTR data collected during the 2019 Raikoke (Kuril Island, Russia) eruption. |
format | Conference Object |
genre | Iceland |
genre_facet | Iceland |
geographic | Eyjafjallajokull |
geographic_facet | Eyjafjallajokull |
id | ftunivromatorver:oai:art.torvergata.it:2108/389851 |
institution | Open Polar |
language | English |
long_lat | ENVELOPE(-19.633,-19.633,63.631,63.631) |
op_collection_id | ftunivromatorver |
op_container_end_page | 7347 |
op_doi | https://doi.org/10.1109/IGARSS46834.2022.9883922 |
op_relation | info:eu-repo/semantics/altIdentifier/isbn/978-1-6654-2792-0 info:eu-repo/semantics/altIdentifier/wos/WOS:000920916607068 ispartofbook:IGARSS 2022: 2022 IEEE International Geoscience and Remote Sensing Symposium IGARSS 2022 volume:2022-July firstpage:7344 lastpage:7347 numberofpages:4 serie:IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS https://hdl.handle.net/2108/389851 doi:10.1109/IGARSS46834.2022.9883922 |
publishDate | 2022 |
publisher | IEEE |
record_format | openpolar |
spelling | ftunivromatorver:oai:art.torvergata.it:2108/389851 2025-05-11T14:21:32+00:00 A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data Petracca I. De Santis D. Corradini S. Guerrieri L. Picchiani M. Merucci L. Stelitano D. Del Frate F. Prata F. Salvucci G. Schiavon G. Petracca, I De Santis, D Corradini, S Guerrieri, L Picchiani, M Merucci, L Stelitano, D Del Frate, F Prata, F Salvucci, G Schiavon, G 2022 https://hdl.handle.net/2108/389851 https://doi.org/10.1109/IGARSS46834.2022.9883922 eng eng IEEE country:US place:New York info:eu-repo/semantics/altIdentifier/isbn/978-1-6654-2792-0 info:eu-repo/semantics/altIdentifier/wos/WOS:000920916607068 ispartofbook:IGARSS 2022: 2022 IEEE International Geoscience and Remote Sensing Symposium IGARSS 2022 volume:2022-July firstpage:7344 lastpage:7347 numberofpages:4 serie:IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS https://hdl.handle.net/2108/389851 doi:10.1109/IGARSS46834.2022.9883922 Ash Detection Neural Networks SLSTR MODIS Settore ING-INF/02 Settore IINF-02/A - Campi elettromagnetici info:eu-repo/semantics/conferenceObject 2022 ftunivromatorver https://doi.org/10.1109/IGARSS46834.2022.9883922 2025-04-15T04:42:26Z In this work the classification of Sentinel-3 Sea and Land Surface Temperature (S3-SLSTR) images with a focus on volcanic cloud detection through a Neural Networks (NNs) approach is presented.Since the hazardous nature of eruptions, a fast and reliable method to monitor the evolution of volcanic clouds in real time is of primary interest. NNs represent a suitable tool for this purpose given their short processing time once trained, and their ability to solve complex problems as those related to natural events.The present research starts from the generation of the training patterns by means of MODerate resolution Imaging Spectroradiometer (MODIS) data collected during the 2010 Eyjafjallajokull (Iceland) eruption, it goes through the training of the NN, and ends with the application of the NN-based model to SLSTR data collected during the 2019 Raikoke (Kuril Island, Russia) eruption. Conference Object Iceland Universitá degli Studi di Roma "Tor Vergata": ART - Archivio Istituzionale della Ricerca Eyjafjallajokull ENVELOPE(-19.633,-19.633,63.631,63.631) IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium 7344 7347 |
spellingShingle | Ash Detection Neural Networks SLSTR MODIS Settore ING-INF/02 Settore IINF-02/A - Campi elettromagnetici Petracca I. De Santis D. Corradini S. Guerrieri L. Picchiani M. Merucci L. Stelitano D. Del Frate F. Prata F. Salvucci G. Schiavon G. A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data |
title | A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data |
title_full | A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data |
title_fullStr | A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data |
title_full_unstemmed | A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data |
title_short | A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data |
title_sort | neural networks approach for volcanic ash detection in the 2019 raikoke eruption using s3-slstr data |
topic | Ash Detection Neural Networks SLSTR MODIS Settore ING-INF/02 Settore IINF-02/A - Campi elettromagnetici |
topic_facet | Ash Detection Neural Networks SLSTR MODIS Settore ING-INF/02 Settore IINF-02/A - Campi elettromagnetici |
url | https://hdl.handle.net/2108/389851 https://doi.org/10.1109/IGARSS46834.2022.9883922 |