A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data

In this work the classification of Sentinel-3 Sea and Land Surface Temperature (S3-SLSTR) images with a focus on volcanic cloud detection through a Neural Networks (NNs) approach is presented.Since the hazardous nature of eruptions, a fast and reliable method to monitor the evolution of volcanic clo...

Full description

Bibliographic Details
Published in:IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium
Main Authors: Petracca I., De Santis D., Corradini S., Guerrieri L., Picchiani M., Merucci L., Stelitano D., Del Frate F., Prata F., Salvucci G., Schiavon G.
Other Authors: Petracca, I, De Santis, D, Corradini, S, Guerrieri, L, Picchiani, M, Merucci, L, Stelitano, D, Del Frate, F, Prata, F, Salvucci, G, Schiavon, G
Format: Conference Object
Language:English
Published: IEEE 2022
Subjects:
Online Access:https://hdl.handle.net/2108/389851
https://doi.org/10.1109/IGARSS46834.2022.9883922
_version_ 1831846696808611840
author Petracca I.
De Santis D.
Corradini S.
Guerrieri L.
Picchiani M.
Merucci L.
Stelitano D.
Del Frate F.
Prata F.
Salvucci G.
Schiavon G.
author2 Petracca, I
De Santis, D
Corradini, S
Guerrieri, L
Picchiani, M
Merucci, L
Stelitano, D
Del Frate, F
Prata, F
Salvucci, G
Schiavon, G
author_facet Petracca I.
De Santis D.
Corradini S.
Guerrieri L.
Picchiani M.
Merucci L.
Stelitano D.
Del Frate F.
Prata F.
Salvucci G.
Schiavon G.
author_sort Petracca I.
collection Universitá degli Studi di Roma "Tor Vergata": ART - Archivio Istituzionale della Ricerca
container_start_page 7344
container_title IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium
description In this work the classification of Sentinel-3 Sea and Land Surface Temperature (S3-SLSTR) images with a focus on volcanic cloud detection through a Neural Networks (NNs) approach is presented.Since the hazardous nature of eruptions, a fast and reliable method to monitor the evolution of volcanic clouds in real time is of primary interest. NNs represent a suitable tool for this purpose given their short processing time once trained, and their ability to solve complex problems as those related to natural events.The present research starts from the generation of the training patterns by means of MODerate resolution Imaging Spectroradiometer (MODIS) data collected during the 2010 Eyjafjallajokull (Iceland) eruption, it goes through the training of the NN, and ends with the application of the NN-based model to SLSTR data collected during the 2019 Raikoke (Kuril Island, Russia) eruption.
format Conference Object
genre Iceland
genre_facet Iceland
geographic Eyjafjallajokull
geographic_facet Eyjafjallajokull
id ftunivromatorver:oai:art.torvergata.it:2108/389851
institution Open Polar
language English
long_lat ENVELOPE(-19.633,-19.633,63.631,63.631)
op_collection_id ftunivromatorver
op_container_end_page 7347
op_doi https://doi.org/10.1109/IGARSS46834.2022.9883922
op_relation info:eu-repo/semantics/altIdentifier/isbn/978-1-6654-2792-0
info:eu-repo/semantics/altIdentifier/wos/WOS:000920916607068
ispartofbook:IGARSS 2022: 2022 IEEE International Geoscience and Remote Sensing Symposium
IGARSS 2022
volume:2022-July
firstpage:7344
lastpage:7347
numberofpages:4
serie:IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS
https://hdl.handle.net/2108/389851
doi:10.1109/IGARSS46834.2022.9883922
publishDate 2022
publisher IEEE
record_format openpolar
spelling ftunivromatorver:oai:art.torvergata.it:2108/389851 2025-05-11T14:21:32+00:00 A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data Petracca I. De Santis D. Corradini S. Guerrieri L. Picchiani M. Merucci L. Stelitano D. Del Frate F. Prata F. Salvucci G. Schiavon G. Petracca, I De Santis, D Corradini, S Guerrieri, L Picchiani, M Merucci, L Stelitano, D Del Frate, F Prata, F Salvucci, G Schiavon, G 2022 https://hdl.handle.net/2108/389851 https://doi.org/10.1109/IGARSS46834.2022.9883922 eng eng IEEE country:US place:New York info:eu-repo/semantics/altIdentifier/isbn/978-1-6654-2792-0 info:eu-repo/semantics/altIdentifier/wos/WOS:000920916607068 ispartofbook:IGARSS 2022: 2022 IEEE International Geoscience and Remote Sensing Symposium IGARSS 2022 volume:2022-July firstpage:7344 lastpage:7347 numberofpages:4 serie:IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS https://hdl.handle.net/2108/389851 doi:10.1109/IGARSS46834.2022.9883922 Ash Detection Neural Networks SLSTR MODIS Settore ING-INF/02 Settore IINF-02/A - Campi elettromagnetici info:eu-repo/semantics/conferenceObject 2022 ftunivromatorver https://doi.org/10.1109/IGARSS46834.2022.9883922 2025-04-15T04:42:26Z In this work the classification of Sentinel-3 Sea and Land Surface Temperature (S3-SLSTR) images with a focus on volcanic cloud detection through a Neural Networks (NNs) approach is presented.Since the hazardous nature of eruptions, a fast and reliable method to monitor the evolution of volcanic clouds in real time is of primary interest. NNs represent a suitable tool for this purpose given their short processing time once trained, and their ability to solve complex problems as those related to natural events.The present research starts from the generation of the training patterns by means of MODerate resolution Imaging Spectroradiometer (MODIS) data collected during the 2010 Eyjafjallajokull (Iceland) eruption, it goes through the training of the NN, and ends with the application of the NN-based model to SLSTR data collected during the 2019 Raikoke (Kuril Island, Russia) eruption. Conference Object Iceland Universitá degli Studi di Roma "Tor Vergata": ART - Archivio Istituzionale della Ricerca Eyjafjallajokull ENVELOPE(-19.633,-19.633,63.631,63.631) IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium 7344 7347
spellingShingle Ash Detection
Neural Networks
SLSTR
MODIS
Settore ING-INF/02
Settore IINF-02/A - Campi elettromagnetici
Petracca I.
De Santis D.
Corradini S.
Guerrieri L.
Picchiani M.
Merucci L.
Stelitano D.
Del Frate F.
Prata F.
Salvucci G.
Schiavon G.
A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data
title A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data
title_full A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data
title_fullStr A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data
title_full_unstemmed A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data
title_short A Neural Networks Approach for Volcanic Ash Detection in the 2019 Raikoke Eruption Using S3-SLSTR Data
title_sort neural networks approach for volcanic ash detection in the 2019 raikoke eruption using s3-slstr data
topic Ash Detection
Neural Networks
SLSTR
MODIS
Settore ING-INF/02
Settore IINF-02/A - Campi elettromagnetici
topic_facet Ash Detection
Neural Networks
SLSTR
MODIS
Settore ING-INF/02
Settore IINF-02/A - Campi elettromagnetici
url https://hdl.handle.net/2108/389851
https://doi.org/10.1109/IGARSS46834.2022.9883922