Phanerozoic Geodynamic Evolution of the Circum-Italian Realm

The Phanerozoic geodynamic evolution of Europe is reviewed for the purpose of identifying its bearing on the petrogenesis of the Cenozoic European Volcanic Province. Several events capable of modifying the chemistry and mineralogy of the mantle, such as subduction of oceanic crust, continent-contine...

Full description

Bibliographic Details
Published in:International Geology Review
Main Author: LUSTRINO, Michele
Other Authors: Lustrino, Michele
Format: Article in Journal/Newspaper
Language:English
Published: V H Winston & Sons Incorporated:PO Box 2217:Columbia, MD 21045:(410)621-3757, INTERNET: http://www.bellpub.com 2000
Subjects:
Online Access:http://hdl.handle.net/11573/38845
https://doi.org/10.1080/00206810009465109
Description
Summary:The Phanerozoic geodynamic evolution of Europe is reviewed for the purpose of identifying its bearing on the petrogenesis of the Cenozoic European Volcanic Province. Several events capable of modifying the chemistry and mineralogy of the mantle, such as subduction of oceanic crust, continent-continent collision, and ocean formation are emphasized. The area now occupied by the Mediterranean Sea and, in general, all of Europe, underwent a complex geodynamic evolution, involving large relative crustal movements. The Paleozoic to Recent evolution of the circum-Mediterranean Sea area can be summarized as follows: (1) extension during the Precambrian (presence of ~3000 to 4000 km wide oceanic crust between Laurussia (consisting of the Laurentian and Baltica-Fennoscandian cratons) and Gondwana (South America, Africa, Australia, India, and Antarctica); (2) collisional movements with the formation of "Andean-type" margins during the Late Precambrian to Middle Paleozoic, followed by "Himalayan-type" margins during the Carboniferous (Hercynian orogeny sensu stricto); (3) change of plate movements and development of tensional (transtensive) stresses at the end of the Paleozoic, as indicated by the formation of the North Atlantic-Tethys rift system, with the Cretaceous formation of the Ligurian-Piedmontese and the Mesogean Ocean; (4) the Alpine orogeny, with a two-stage compressive cycle—(a) Eoalpine (Paleogene closure of the Ligurian-Piedmontese Ocean; formation of the Betic Cordillera, western-northern Alps, and Carpatho-Balkan Arc), with Europe-verging thrusts; and (b) Neoalpine (Neogene-Pleistocene formation of the Apennine, Maghrebide, Dinaride, and Hellenide chains, plus the backthrusted southern Alps, all with African vergence; opening of two diachronous backarc basins—the Ligurian-Provençal Basin and the Tyrrhenian Sea—in the western Mediterranean). Hercynian-age modifications (the most important of which are subduction-related) led to almost unique isotopic ratios, such as low 143Nd/144Nd, 206Pb/204Pb, 3He/4He, and ...