Assessing the spaceborne 183.31-GHz radiometric channel geolocation using high-altitude lakes, ice shelves, and SAR imagery

The goal of this work is to perform the geolocation error assessment of the channel imagery at 183.31 GHz of the Special Sensor Microwave Imager/Sounder (SSMIS). The frequency around 183.31 GHz still represents the highest channel frequency of current spaceborne microwave and millimeter-wave radiome...

Full description

Bibliographic Details
Published in:IEEE Transactions on Geoscience and Remote Sensing
Main Authors: Papa M., Mattioli V., Avbelj J., Marzano F. S.
Other Authors: Papa, M., Mattioli, V., Avbelj, J., Marzano, F. S.
Format: Article in Journal/Newspaper
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2021
Subjects:
Online Access:http://hdl.handle.net/11573/1555397
https://doi.org/10.1109/TGRS.2020.3024677
id ftunivromairis:oai:iris.uniroma1.it:11573/1555397
record_format openpolar
spelling ftunivromairis:oai:iris.uniroma1.it:11573/1555397 2024-04-21T07:51:57+00:00 Assessing the spaceborne 183.31-GHz radiometric channel geolocation using high-altitude lakes, ice shelves, and SAR imagery Papa M. Mattioli V. Avbelj J. Marzano F. S. Papa, M. Mattioli, V. Avbelj, J. Marzano, F. S. 2021 http://hdl.handle.net/11573/1555397 https://doi.org/10.1109/TGRS.2020.3024677 eng eng Institute of Electrical and Electronics Engineers Inc. place:445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA info:eu-repo/semantics/altIdentifier/wos/WOS:000642096400031 volume:59 issue:5 firstpage:4044 lastpage:4061 numberofpages:18 journal:IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING http://hdl.handle.net/11573/1555397 doi:10.1109/TGRS.2020.3024677 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85104737529 info:eu-repo/semantics/closedAccess image geolocation error spaceborne millimeter-wave radiometer surface landmark synthetic aperture radar (SAR) imagery info:eu-repo/semantics/article 2021 ftunivromairis https://doi.org/10.1109/TGRS.2020.3024677 2024-03-28T02:12:45Z The goal of this work is to perform the geolocation error assessment of the channel imagery at 183.31 GHz of the Special Sensor Microwave Imager/Sounder (SSMIS). The frequency around 183.31 GHz still represents the highest channel frequency of current spaceborne microwave and millimeter-wave radiometers. The latter will be extended to frequencies up to 664 GHz, as in the case of EUMETSAT Ice Cloud Imager (ICI). This use of submillimeter observations unfortunately prevents a straightforward geolocation error assessment using landmark-based techniques. We used SSMIS data at 183.31 GHz as a submillimeter proxy to identify the most suitable targets for geolocation error validation in very dry atmospheric conditions, as suggested by radiative transfer modeling. Using a yearly SSMIS data set, three candidates' landmark targets are selected: 1) high-altitude lakes and high-latitude bays using a coastline reference database and 2) Antarctic ice shelves using coastlines derived from Sentinel-1 Synthetic Aperture Radar (SAR) imagery. Data processing is carried out by using spatial cross correlation methods in the spatial frequency domain and performing a numerical sensitivity analysis to contour displacement. Cloud masking, based on a fuzzy-logic approach, is applied to automatically selected clear-air days. The results show that the average geolocation error is about 6.2 km for mountainous lakes and sea bays and 5.4 km for ice shelves, with a standard deviation of about 2.7 and 2.0 km, respectively. The results are in line with SSMIS previous estimates, whereas annual clear-air days are about 10% for mountainous lakes and sea bays and 18% for ice shelves. Article in Journal/Newspaper Antarc* Antarctic Ice Shelves Sapienza Università di Roma: CINECA IRIS IEEE Transactions on Geoscience and Remote Sensing 59 5 4044 4061
institution Open Polar
collection Sapienza Università di Roma: CINECA IRIS
op_collection_id ftunivromairis
language English
topic image geolocation error
spaceborne millimeter-wave radiometer
surface landmark
synthetic aperture radar (SAR) imagery
spellingShingle image geolocation error
spaceborne millimeter-wave radiometer
surface landmark
synthetic aperture radar (SAR) imagery
Papa M.
Mattioli V.
Avbelj J.
Marzano F. S.
Assessing the spaceborne 183.31-GHz radiometric channel geolocation using high-altitude lakes, ice shelves, and SAR imagery
topic_facet image geolocation error
spaceborne millimeter-wave radiometer
surface landmark
synthetic aperture radar (SAR) imagery
description The goal of this work is to perform the geolocation error assessment of the channel imagery at 183.31 GHz of the Special Sensor Microwave Imager/Sounder (SSMIS). The frequency around 183.31 GHz still represents the highest channel frequency of current spaceborne microwave and millimeter-wave radiometers. The latter will be extended to frequencies up to 664 GHz, as in the case of EUMETSAT Ice Cloud Imager (ICI). This use of submillimeter observations unfortunately prevents a straightforward geolocation error assessment using landmark-based techniques. We used SSMIS data at 183.31 GHz as a submillimeter proxy to identify the most suitable targets for geolocation error validation in very dry atmospheric conditions, as suggested by radiative transfer modeling. Using a yearly SSMIS data set, three candidates' landmark targets are selected: 1) high-altitude lakes and high-latitude bays using a coastline reference database and 2) Antarctic ice shelves using coastlines derived from Sentinel-1 Synthetic Aperture Radar (SAR) imagery. Data processing is carried out by using spatial cross correlation methods in the spatial frequency domain and performing a numerical sensitivity analysis to contour displacement. Cloud masking, based on a fuzzy-logic approach, is applied to automatically selected clear-air days. The results show that the average geolocation error is about 6.2 km for mountainous lakes and sea bays and 5.4 km for ice shelves, with a standard deviation of about 2.7 and 2.0 km, respectively. The results are in line with SSMIS previous estimates, whereas annual clear-air days are about 10% for mountainous lakes and sea bays and 18% for ice shelves.
author2 Papa, M.
Mattioli, V.
Avbelj, J.
Marzano, F. S.
format Article in Journal/Newspaper
author Papa M.
Mattioli V.
Avbelj J.
Marzano F. S.
author_facet Papa M.
Mattioli V.
Avbelj J.
Marzano F. S.
author_sort Papa M.
title Assessing the spaceborne 183.31-GHz radiometric channel geolocation using high-altitude lakes, ice shelves, and SAR imagery
title_short Assessing the spaceborne 183.31-GHz radiometric channel geolocation using high-altitude lakes, ice shelves, and SAR imagery
title_full Assessing the spaceborne 183.31-GHz radiometric channel geolocation using high-altitude lakes, ice shelves, and SAR imagery
title_fullStr Assessing the spaceborne 183.31-GHz radiometric channel geolocation using high-altitude lakes, ice shelves, and SAR imagery
title_full_unstemmed Assessing the spaceborne 183.31-GHz radiometric channel geolocation using high-altitude lakes, ice shelves, and SAR imagery
title_sort assessing the spaceborne 183.31-ghz radiometric channel geolocation using high-altitude lakes, ice shelves, and sar imagery
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2021
url http://hdl.handle.net/11573/1555397
https://doi.org/10.1109/TGRS.2020.3024677
genre Antarc*
Antarctic
Ice Shelves
genre_facet Antarc*
Antarctic
Ice Shelves
op_relation info:eu-repo/semantics/altIdentifier/wos/WOS:000642096400031
volume:59
issue:5
firstpage:4044
lastpage:4061
numberofpages:18
journal:IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
http://hdl.handle.net/11573/1555397
doi:10.1109/TGRS.2020.3024677
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85104737529
op_rights info:eu-repo/semantics/closedAccess
op_doi https://doi.org/10.1109/TGRS.2020.3024677
container_title IEEE Transactions on Geoscience and Remote Sensing
container_volume 59
container_issue 5
container_start_page 4044
op_container_end_page 4061
_version_ 1796935228996976640