Oil spill fishery impact assessment model: Sensitivity to spill location and timing

An oil spill fishery impact assessment model system has been applied to the Georges Bank-Gulf of Maine region to assess the sensitivity of probable impact on several key fisheries to spill location and timing. Simulations of the impact on the fishery of tanker spills (20 million gallons released ove...

Full description

Bibliographic Details
Published in:Estuarine, Coastal and Shelf Science
Main Authors: Spaulding, Malcolm L., Reed, Mark, Anderson, Eric, Isaji, Tatsusaburo, Swanson, J. Craig, Saila, Saul B., Lorda, Ernesto, Walker, Henry
Format: Text
Language:unknown
Published: DigitalCommons@URI 1985
Subjects:
cod
Online Access:https://digitalcommons.uri.edu/oce_facpubs/477
https://doi.org/10.1016/0272-7714(85)90117-9
Description
Summary:An oil spill fishery impact assessment model system has been applied to the Georges Bank-Gulf of Maine region to assess the sensitivity of probable impact on several key fisheries to spill location and timing. Simulations of the impact on the fishery of tanker spills (20 million gallons released over 5 days), at two separate locations for each season of the year, and blowout spills (68 million gallons released over 30 days) at one location, with monthly releases and at six other locations with seasonal spills have been studied. Atlantic cod has been employed as the principal fish species throughout the simulations. Impacts on Atlantic herring and haddock have also been investigated for selected cases. All spill sites are located on Georges Bank with the majority in the general region of OCS leasing activity. The results of these simulations suggest a complex interaction among spill location and timing, the spatial and temporal distribution of spawning, the population dynamics of the species under study, and the hydrodynamics of the area. For the species studied, spills occurring during the winter and spring have the largest impact with cod being the most heavily impacted followed by haddock and herring. In all cases, the maximum cumulative loss to the fishery of a one time spill event never exceeded 25% of the annual catch with the exact value depending on the number of ichthyoplankton impacted by the spill and the compensatory dynamics of the population. © 1985.