A Parameter Model of Gas Exchange for the Seasonal Sea Ice Zone
Carbon budgets for the polar oceans require better constraint on air–sea gas exchange in the sea ice zone (SIZ). Here, we utilize advances in the theory of turbulence, mixing and air–sea flux in the ice–ocean boundary layer (IOBL) to formulate a simple model for gas exchange when the surface o...
Published in: | Ocean Science |
---|---|
Main Authors: | , , , , |
Format: | Text |
Language: | unknown |
Published: |
DigitalCommons@URI
2014
|
Subjects: | |
Online Access: | https://digitalcommons.uri.edu/gsofacpubs/52 https://doi.org/10.5194/os-10-17-2014 https://digitalcommons.uri.edu/context/gsofacpubs/article/1058/viewcontent/os_10_17_2014.pdf |
id |
ftunivrhodeislan:oai:digitalcommons.uri.edu:gsofacpubs-1058 |
---|---|
record_format |
openpolar |
spelling |
ftunivrhodeislan:oai:digitalcommons.uri.edu:gsofacpubs-1058 2024-09-15T18:34:39+00:00 A Parameter Model of Gas Exchange for the Seasonal Sea Ice Zone Loose, Brice McGillis, W. R. Perovich, D. Zappa, C. J. Schlosser, P. 2014-01-28T08:00:00Z application/pdf https://digitalcommons.uri.edu/gsofacpubs/52 https://doi.org/10.5194/os-10-17-2014 https://digitalcommons.uri.edu/context/gsofacpubs/article/1058/viewcontent/os_10_17_2014.pdf unknown DigitalCommons@URI https://digitalcommons.uri.edu/gsofacpubs/52 doi:10.5194/os-10-17-2014 https://digitalcommons.uri.edu/context/gsofacpubs/article/1058/viewcontent/os_10_17_2014.pdf http://creativecommons.org/licenses/by/3.0/ Graduate School of Oceanography Faculty Publications text 2014 ftunivrhodeislan https://doi.org/10.5194/os-10-17-2014 2024-08-21T00:09:33Z Carbon budgets for the polar oceans require better constraint on air–sea gas exchange in the sea ice zone (SIZ). Here, we utilize advances in the theory of turbulence, mixing and air–sea flux in the ice–ocean boundary layer (IOBL) to formulate a simple model for gas exchange when the surface ocean is partially covered by sea ice. The gas transfer velocity (k) is related to shear-driven and convection-driven turbulence in the aqueous mass boundary layer, and to the mean-squared wave slope at the air–sea interface. We use the model to estimate k along the drift track of ice-tethered profilers (ITPs) in the Arctic. Individual estimates of daily-averaged k from ITP drifts ranged between 1.1 and 22 m d−1, and the fraction of open water (f) ranged from 0 to 0.83. Converted to area-weighted effective transfer velocities (keff), the minimum value of keff was 10−55 m d−1 near f = 0 with values exceeding keff = 5 m d−1 at f = 0.4. The model indicates that effects from shear and convection in the sea ice zone contribute an additional 40% to the magnitude of keff, beyond what would be predicted from an estimate of keff based solely upon a wind speed parameterization. Although the ultimate scaling relationship for gas exchange in the sea ice zone will require validation in laboratory and field studies, the basic parameter model described here demonstrates that it is feasible to formulate estimates of k based upon properties of the IOBL using data sources that presently exist. Text Sea ice University of Rhode Island: DigitalCommons@URI Ocean Science 10 1 17 28 |
institution |
Open Polar |
collection |
University of Rhode Island: DigitalCommons@URI |
op_collection_id |
ftunivrhodeislan |
language |
unknown |
description |
Carbon budgets for the polar oceans require better constraint on air–sea gas exchange in the sea ice zone (SIZ). Here, we utilize advances in the theory of turbulence, mixing and air–sea flux in the ice–ocean boundary layer (IOBL) to formulate a simple model for gas exchange when the surface ocean is partially covered by sea ice. The gas transfer velocity (k) is related to shear-driven and convection-driven turbulence in the aqueous mass boundary layer, and to the mean-squared wave slope at the air–sea interface. We use the model to estimate k along the drift track of ice-tethered profilers (ITPs) in the Arctic. Individual estimates of daily-averaged k from ITP drifts ranged between 1.1 and 22 m d−1, and the fraction of open water (f) ranged from 0 to 0.83. Converted to area-weighted effective transfer velocities (keff), the minimum value of keff was 10−55 m d−1 near f = 0 with values exceeding keff = 5 m d−1 at f = 0.4. The model indicates that effects from shear and convection in the sea ice zone contribute an additional 40% to the magnitude of keff, beyond what would be predicted from an estimate of keff based solely upon a wind speed parameterization. Although the ultimate scaling relationship for gas exchange in the sea ice zone will require validation in laboratory and field studies, the basic parameter model described here demonstrates that it is feasible to formulate estimates of k based upon properties of the IOBL using data sources that presently exist. |
format |
Text |
author |
Loose, Brice McGillis, W. R. Perovich, D. Zappa, C. J. Schlosser, P. |
spellingShingle |
Loose, Brice McGillis, W. R. Perovich, D. Zappa, C. J. Schlosser, P. A Parameter Model of Gas Exchange for the Seasonal Sea Ice Zone |
author_facet |
Loose, Brice McGillis, W. R. Perovich, D. Zappa, C. J. Schlosser, P. |
author_sort |
Loose, Brice |
title |
A Parameter Model of Gas Exchange for the Seasonal Sea Ice Zone |
title_short |
A Parameter Model of Gas Exchange for the Seasonal Sea Ice Zone |
title_full |
A Parameter Model of Gas Exchange for the Seasonal Sea Ice Zone |
title_fullStr |
A Parameter Model of Gas Exchange for the Seasonal Sea Ice Zone |
title_full_unstemmed |
A Parameter Model of Gas Exchange for the Seasonal Sea Ice Zone |
title_sort |
parameter model of gas exchange for the seasonal sea ice zone |
publisher |
DigitalCommons@URI |
publishDate |
2014 |
url |
https://digitalcommons.uri.edu/gsofacpubs/52 https://doi.org/10.5194/os-10-17-2014 https://digitalcommons.uri.edu/context/gsofacpubs/article/1058/viewcontent/os_10_17_2014.pdf |
genre |
Sea ice |
genre_facet |
Sea ice |
op_source |
Graduate School of Oceanography Faculty Publications |
op_relation |
https://digitalcommons.uri.edu/gsofacpubs/52 doi:10.5194/os-10-17-2014 https://digitalcommons.uri.edu/context/gsofacpubs/article/1058/viewcontent/os_10_17_2014.pdf |
op_rights |
http://creativecommons.org/licenses/by/3.0/ |
op_doi |
https://doi.org/10.5194/os-10-17-2014 |
container_title |
Ocean Science |
container_volume |
10 |
container_issue |
1 |
container_start_page |
17 |
op_container_end_page |
28 |
_version_ |
1810476572676718592 |