Modelling Waterfall Retreat in Heterogenous Bedrock

International audience Bedrock rivers are the mediators of environmental change through mountainous landscapes. In response to an increase in uplift rate for example, a “knickpoint” (often materialised as a waterfall) will propagate upstream, separating a domain downstream where the river and its ad...

Full description

Bibliographic Details
Main Authors: Attal, Mikaël, Hodge, Rebecca, A., Williams, Richard, Baynes, Edwin
Other Authors: University of Edinburgh (Edin.), Durham University, University of Glasgow, Géosciences Rennes (GR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), American Geophysical Union
Format: Conference Object
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://insu.hal.science/insu-01445516
id ftunivrennes2hal:oai:HAL:insu-01445516v1
record_format openpolar
spelling ftunivrennes2hal:oai:HAL:insu-01445516v1 2024-04-21T08:05:56+00:00 Modelling Waterfall Retreat in Heterogenous Bedrock Attal, Mikaël Hodge, Rebecca, A. Williams, Richard Baynes, Edwin University of Edinburgh (Edin.) Durham University University of Glasgow Géosciences Rennes (GR) Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR) Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS) American Geophysical Union San Francisco, United States 2016-12-12 https://insu.hal.science/insu-01445516 en eng HAL CCSD insu-01445516 https://insu.hal.science/insu-01445516 American Geophysical Union Fall Meeting 2016 https://insu.hal.science/insu-01445516 American Geophysical Union Fall Meeting 2016, Dec 2016, San Francisco, United States. pp.EP33D-1029, 2016 [SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology info:eu-repo/semantics/conferenceObject Conference poster 2016 ftunivrennes2hal 2024-03-27T15:58:15Z International audience Bedrock rivers are the mediators of environmental change through mountainous landscapes. In response to an increase in uplift rate for example, a “knickpoint” (often materialised as a waterfall) will propagate upstream, separating a domain downstream where the river and its adjacent hillslopes have steepened in response to the change from a “relict” domain upstream which is adjusted to the conditions before the change (Crosby and Whipple 2006). Many studies assume that knickpoint propagation rate scales with drainage area, based on the stream power theory. However, recent studies in a range of locations have found no obvious relationship between knickpoint retreat rate and drainage area, potentially resulting from the stream power law neglecting (i) the influence of sediment on the processes associated with waterfall migration and (ii) thresholds for bedrock detachment (Cook et al. 2013; Mackey et al. 2014; DiBiase et al. 2015; Baynes et al. 2015; Brocard et al. 2016).In this study, we develop a 1D model of waterfall retreat in horizontally bedded bedrock with varying joint spacing. In the model, knickpoint migration is based on two rules: a waterfall will start migrating once the threshold flow depth (a function of knickpoint height and joint spacing) has been exceeded (Lamb and Dietrich 2009), and the migration rate will then be a function of the water-depth-to-waterfall-height ratio, based on experimental results by Baynes (2015). Using a hydrograph based on a Poisson rectangular pulse rainfall simulator (Tucker and Bras 2001), we demonstrate the importance of structure in controlling the speed at which waterfalls migrate but also their number and the length over which they are distributed (Fig. 1). The model is applied to the Jökulsá á Fjöllum, NE Iceland, where rapid migration of waterfalls as a result of discrete events has been identified (Baynes et al. 2015), using new constraints on joint spacing derived from high resolution lidar survey of the gorge walls. Conference Object Iceland Archive Ouverte de l'Université Rennes (HAL)
institution Open Polar
collection Archive Ouverte de l'Université Rennes (HAL)
op_collection_id ftunivrennes2hal
language English
topic [SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology
spellingShingle [SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology
Attal, Mikaël
Hodge, Rebecca, A.
Williams, Richard
Baynes, Edwin
Modelling Waterfall Retreat in Heterogenous Bedrock
topic_facet [SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology
description International audience Bedrock rivers are the mediators of environmental change through mountainous landscapes. In response to an increase in uplift rate for example, a “knickpoint” (often materialised as a waterfall) will propagate upstream, separating a domain downstream where the river and its adjacent hillslopes have steepened in response to the change from a “relict” domain upstream which is adjusted to the conditions before the change (Crosby and Whipple 2006). Many studies assume that knickpoint propagation rate scales with drainage area, based on the stream power theory. However, recent studies in a range of locations have found no obvious relationship between knickpoint retreat rate and drainage area, potentially resulting from the stream power law neglecting (i) the influence of sediment on the processes associated with waterfall migration and (ii) thresholds for bedrock detachment (Cook et al. 2013; Mackey et al. 2014; DiBiase et al. 2015; Baynes et al. 2015; Brocard et al. 2016).In this study, we develop a 1D model of waterfall retreat in horizontally bedded bedrock with varying joint spacing. In the model, knickpoint migration is based on two rules: a waterfall will start migrating once the threshold flow depth (a function of knickpoint height and joint spacing) has been exceeded (Lamb and Dietrich 2009), and the migration rate will then be a function of the water-depth-to-waterfall-height ratio, based on experimental results by Baynes (2015). Using a hydrograph based on a Poisson rectangular pulse rainfall simulator (Tucker and Bras 2001), we demonstrate the importance of structure in controlling the speed at which waterfalls migrate but also their number and the length over which they are distributed (Fig. 1). The model is applied to the Jökulsá á Fjöllum, NE Iceland, where rapid migration of waterfalls as a result of discrete events has been identified (Baynes et al. 2015), using new constraints on joint spacing derived from high resolution lidar survey of the gorge walls.
author2 University of Edinburgh (Edin.)
Durham University
University of Glasgow
Géosciences Rennes (GR)
Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)
Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)
American Geophysical Union
format Conference Object
author Attal, Mikaël
Hodge, Rebecca, A.
Williams, Richard
Baynes, Edwin
author_facet Attal, Mikaël
Hodge, Rebecca, A.
Williams, Richard
Baynes, Edwin
author_sort Attal, Mikaël
title Modelling Waterfall Retreat in Heterogenous Bedrock
title_short Modelling Waterfall Retreat in Heterogenous Bedrock
title_full Modelling Waterfall Retreat in Heterogenous Bedrock
title_fullStr Modelling Waterfall Retreat in Heterogenous Bedrock
title_full_unstemmed Modelling Waterfall Retreat in Heterogenous Bedrock
title_sort modelling waterfall retreat in heterogenous bedrock
publisher HAL CCSD
publishDate 2016
url https://insu.hal.science/insu-01445516
op_coverage San Francisco, United States
genre Iceland
genre_facet Iceland
op_source American Geophysical Union Fall Meeting 2016
https://insu.hal.science/insu-01445516
American Geophysical Union Fall Meeting 2016, Dec 2016, San Francisco, United States. pp.EP33D-1029, 2016
op_relation insu-01445516
https://insu.hal.science/insu-01445516
_version_ 1796945279928238080