Solving large sparse linear systems with a variable s-step GMRES preconditioned by DD

International audience Krylov methods such as GMRES are efficient iterative methods to solve large sparse linear systems, with only a few key kernel operations: the matrix-vector product, solving a preconditioning system, and building the orthonormal Krylov basis. Domain Decomposition methods allow...

Full description

Bibliographic Details
Main Authors: Imberti, David, Erhel, Jocelyne
Other Authors: Fluid Flow Analysis, Description and Control from Image Sequences (FLUMINANCE), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), ANR-11-LABX-0020,LEBESGUE,Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation(2011), European Project: 610741,EC:FP7:ICT,FP7-ICT-2013-10,EXA2CT(2013)
Format: Conference Object
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://inria.hal.science/hal-01528636
https://inria.hal.science/hal-01528636/document
https://inria.hal.science/hal-01528636/file/fibgmres.pdf
Description
Summary:International audience Krylov methods such as GMRES are efficient iterative methods to solve large sparse linear systems, with only a few key kernel operations: the matrix-vector product, solving a preconditioning system, and building the orthonormal Krylov basis. Domain Decomposition methods allow parallel computations for both the matrix-vector products and preconditioning by using a Schwarz approach combined with deflation (similar to a coarse-grid correction). However, building the orthonormal Krylov basis involves scalar products, which in turn have a communication overhead. In order to avoid this communication, it is possible to build the basis by a block of vectors at a time, sometimes at the price of a loss of orthogonality. We define a sequence of such blocks with a variable size. We show through some theoretical results and some numerical experiments that increasing the block size as a Fibonacci sequence improves stability and convergence.