Ridge-plume interaction and differential spreading along the northern North Atlantic ridge and resulting Cenozoic compressional deformation of the NE Atlantic margin
International audience The northern North Atlantic ocean and its adjacent continental margins have specific and unusual features: association of the ridge with a major mantle plume, a history of ridge jump and extinction, and intraplate deformation on the margins (inverted basins and compressional d...
Main Authors: | , , , |
---|---|
Other Authors: | , , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
2011
|
Subjects: | |
Online Access: | https://insu.hal.science/insu-00669835 |
id |
ftunivrennes1hal:oai:HAL:insu-00669835v1 |
---|---|
record_format |
openpolar |
spelling |
ftunivrennes1hal:oai:HAL:insu-00669835v1 2024-02-11T10:04:28+01:00 Ridge-plume interaction and differential spreading along the northern North Atlantic ridge and resulting Cenozoic compressional deformation of the NE Atlantic margin Le Breton, Eline Cobbold, P.R. Roperch, Pierrick Dauteuil, Olivier Géosciences Rennes (GR) Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR) Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS) Vienne, Austria 2011-04-03 https://insu.hal.science/insu-00669835 en eng HAL CCSD insu-00669835 https://insu.hal.science/insu-00669835 Geophysical Research Abstracts European Geosciences Union General Assembly 2011 https://insu.hal.science/insu-00669835 European Geosciences Union General Assembly 2011, Apr 2011, Vienne, Austria. pp.EGU2011-6001 [SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics [SDE.MCG]Environmental Sciences/Global Changes info:eu-repo/semantics/conferenceObject Conference papers 2011 ftunivrennes1hal 2024-01-23T23:45:41Z International audience The northern North Atlantic ocean and its adjacent continental margins have specific and unusual features: association of the ridge with a major mantle plume, a history of ridge jump and extinction, and intraplate deformation on the margins (inverted basins and compressional domes). Reconstructions of the opening of the North Atlantic ocean, on the basis of two rigid plates (Eurasia and Europe), lead to unacceptable misfits. Furthermore, plate velocities vary significantly across the Jan Mayen Fracture Zone. However, a subdivision of the North Atlantic ocean into micro-plates leads to better fits. We have developed a method for palinspastic reconstruction of the opening of the northern North Atlantic ocean, using magnetic anomalies. Instead of traditional Euler poles, we have used an iterative least-squares method, which minimizes the gaps and overlaps between conjugate anomalies. For this purpose, we have subdivided the northern North Atlantic region into a finite number of oceanic blocks, lying between magnetic anomalies and fracture zones. Minimization of the gaps and overlaps involves rigid translations and rotations of the blocks.We have tested various restoration models, (1) either on a plane that is tangent to the Earth's surface or on a sphere, and (2) assuming that either the European side of the ridge or Greenland is stationary. We thereby obtain a full pattern of displacement for all material points, allowing us to calculate mean spreading rates and strike-slip displacements along the main fracture zones. Our reconstructions show that the spreading history of the Aegir ridge was different from those of the nearby Mohns and Reykjanes ridges. The curvature of the Aegir ridge results from variations in the direction and rate of spreading. The spreading rate increased significantly between anomalies 13 and 15 (late Eocene to early Oligocene), for all ridges and particularly for the Aegir ridge (up to 52 mm/y). Furthermore, the rates were greater in the northern part of the Aegir ... Conference Object Greenland Jan Mayen North Atlantic Université de Rennes 1: Publications scientifiques (HAL) Aegir Ridge ENVELOPE(-4.125,-4.125,66.167,66.167) Greenland Jan Mayen Jan Mayen Fracture Zone ENVELOPE(-8.000,-8.000,71.200,71.200) Reykjanes ENVELOPE(-22.250,-22.250,65.467,65.467) |
institution |
Open Polar |
collection |
Université de Rennes 1: Publications scientifiques (HAL) |
op_collection_id |
ftunivrennes1hal |
language |
English |
topic |
[SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics [SDE.MCG]Environmental Sciences/Global Changes |
spellingShingle |
[SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics [SDE.MCG]Environmental Sciences/Global Changes Le Breton, Eline Cobbold, P.R. Roperch, Pierrick Dauteuil, Olivier Ridge-plume interaction and differential spreading along the northern North Atlantic ridge and resulting Cenozoic compressional deformation of the NE Atlantic margin |
topic_facet |
[SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics [SDE.MCG]Environmental Sciences/Global Changes |
description |
International audience The northern North Atlantic ocean and its adjacent continental margins have specific and unusual features: association of the ridge with a major mantle plume, a history of ridge jump and extinction, and intraplate deformation on the margins (inverted basins and compressional domes). Reconstructions of the opening of the North Atlantic ocean, on the basis of two rigid plates (Eurasia and Europe), lead to unacceptable misfits. Furthermore, plate velocities vary significantly across the Jan Mayen Fracture Zone. However, a subdivision of the North Atlantic ocean into micro-plates leads to better fits. We have developed a method for palinspastic reconstruction of the opening of the northern North Atlantic ocean, using magnetic anomalies. Instead of traditional Euler poles, we have used an iterative least-squares method, which minimizes the gaps and overlaps between conjugate anomalies. For this purpose, we have subdivided the northern North Atlantic region into a finite number of oceanic blocks, lying between magnetic anomalies and fracture zones. Minimization of the gaps and overlaps involves rigid translations and rotations of the blocks.We have tested various restoration models, (1) either on a plane that is tangent to the Earth's surface or on a sphere, and (2) assuming that either the European side of the ridge or Greenland is stationary. We thereby obtain a full pattern of displacement for all material points, allowing us to calculate mean spreading rates and strike-slip displacements along the main fracture zones. Our reconstructions show that the spreading history of the Aegir ridge was different from those of the nearby Mohns and Reykjanes ridges. The curvature of the Aegir ridge results from variations in the direction and rate of spreading. The spreading rate increased significantly between anomalies 13 and 15 (late Eocene to early Oligocene), for all ridges and particularly for the Aegir ridge (up to 52 mm/y). Furthermore, the rates were greater in the northern part of the Aegir ... |
author2 |
Géosciences Rennes (GR) Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR) Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS) |
format |
Conference Object |
author |
Le Breton, Eline Cobbold, P.R. Roperch, Pierrick Dauteuil, Olivier |
author_facet |
Le Breton, Eline Cobbold, P.R. Roperch, Pierrick Dauteuil, Olivier |
author_sort |
Le Breton, Eline |
title |
Ridge-plume interaction and differential spreading along the northern North Atlantic ridge and resulting Cenozoic compressional deformation of the NE Atlantic margin |
title_short |
Ridge-plume interaction and differential spreading along the northern North Atlantic ridge and resulting Cenozoic compressional deformation of the NE Atlantic margin |
title_full |
Ridge-plume interaction and differential spreading along the northern North Atlantic ridge and resulting Cenozoic compressional deformation of the NE Atlantic margin |
title_fullStr |
Ridge-plume interaction and differential spreading along the northern North Atlantic ridge and resulting Cenozoic compressional deformation of the NE Atlantic margin |
title_full_unstemmed |
Ridge-plume interaction and differential spreading along the northern North Atlantic ridge and resulting Cenozoic compressional deformation of the NE Atlantic margin |
title_sort |
ridge-plume interaction and differential spreading along the northern north atlantic ridge and resulting cenozoic compressional deformation of the ne atlantic margin |
publisher |
HAL CCSD |
publishDate |
2011 |
url |
https://insu.hal.science/insu-00669835 |
op_coverage |
Vienne, Austria |
long_lat |
ENVELOPE(-4.125,-4.125,66.167,66.167) ENVELOPE(-8.000,-8.000,71.200,71.200) ENVELOPE(-22.250,-22.250,65.467,65.467) |
geographic |
Aegir Ridge Greenland Jan Mayen Jan Mayen Fracture Zone Reykjanes |
geographic_facet |
Aegir Ridge Greenland Jan Mayen Jan Mayen Fracture Zone Reykjanes |
genre |
Greenland Jan Mayen North Atlantic |
genre_facet |
Greenland Jan Mayen North Atlantic |
op_source |
Geophysical Research Abstracts European Geosciences Union General Assembly 2011 https://insu.hal.science/insu-00669835 European Geosciences Union General Assembly 2011, Apr 2011, Vienne, Austria. pp.EGU2011-6001 |
op_relation |
insu-00669835 https://insu.hal.science/insu-00669835 |
_version_ |
1790601072931241984 |