A Type Checker for a Logical Framework with Union and Intersection Types

International audience We present the syntax, semantics, typing, subtyping, unification, refinement, and REPL of Bull, a prototype theorem prover based on the ∆-Framework, i.e. a fully-typed Logical Framework à la Edinburgh LF decorated with union and intersection types, as described in previous pap...

Full description

Bibliographic Details
Main Authors: Stolze, Claude, Liquori, Luigi
Other Authors: Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Logical Time for Formal Embedded System Design (KAIROS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
Format: Conference Object
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-02573605
https://hal.science/hal-02573605v1/document
https://hal.science/hal-02573605v1/file/article.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2020
_version_ 1821868569160318976
author Stolze, Claude
Liquori, Luigi
author2 Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243))
Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Logical Time for Formal Embedded System Design (KAIROS)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
author_facet Stolze, Claude
Liquori, Luigi
author_sort Stolze, Claude
collection Université de Rennes 1: Publications scientifiques (HAL)
description International audience We present the syntax, semantics, typing, subtyping, unification, refinement, and REPL of Bull, a prototype theorem prover based on the ∆-Framework, i.e. a fully-typed Logical Framework à la Edinburgh LF decorated with union and intersection types, as described in previous papers by the authors. Bull also implements a subtyping algorithm for the Type Theory Ξ of Barbanera-Dezani-de'Liguoro. Bull has a command-line interface where the user can declare axioms, terms, and perform computations and some basic terminal-style features like error pretty-printing, subexpressions highlighting, and file loading. Moreover, it can typecheck a proof or normalize it. These terms can be incomplete, therefore the typechecking algorithm uses unification to try to construct the missing subterms. Bull uses the syntax of Berardi's Pure Type Systems to improve the compactness and the modularity of the kernel. Abstract and concrete syntax are mostly aligned and similar to the concrete syntax of Coq. Bull uses a higher-order unification algorithm for terms, while typechecking and partial type inference are done by a bidirectional refinement algorithm, similar to the one found in Matita and Beluga. The refinement can be split into two parts: the essence refinement and the typing refinement. Binders are implemented using commonly-used de Bruijn indices. We have defined a concrete language syntax that will allow user to write ∆-terms. We have defined the reduction rules and an evaluator. We have implemented from scratch a refiner which does partial typechecking and type reconstruction. We have experimented Bull with classical examples of the intersection and union literature, such as the ones formalized by Pfenning with his Refinement Types in LF and by Pierce. We hope that this research vein could be useful to experiment, in a proof theoretical setting, forms of polymorphism alternatives to Girard's parametric one.
format Conference Object
genre Beluga
Beluga*
genre_facet Beluga
Beluga*
geographic Lambda
geographic_facet Lambda
id ftunivrennes1hal:oai:HAL:hal-02573605v1
institution Open Polar
language English
long_lat ENVELOPE(-62.983,-62.983,-64.300,-64.300)
op_collection_id ftunivrennes1hal
op_coverage Paris, France
op_doi https://doi.org/10.4230/LIPIcs.FSCD.2020
op_relation info:eu-repo/semantics/altIdentifier/doi/10.4230/LIPIcs.FSCD.2020
doi:10.4230/LIPIcs.FSCD.2020
op_rights info:eu-repo/semantics/OpenAccess
op_source FSCD 2020 - 5th International Conference on Formal Structures for Computation and Deduction
https://hal.science/hal-02573605
FSCD 2020 - 5th International Conference on Formal Structures for Computation and Deduction, Jun 2020, Paris, France. ⟨10.4230/LIPIcs.FSCD.2020⟩
publishDate 2020
publisher HAL CCSD
record_format openpolar
spelling ftunivrennes1hal:oai:HAL:hal-02573605v1 2025-01-16T21:15:28+00:00 A Type Checker for a Logical Framework with Union and Intersection Types Stolze, Claude Liquori, Luigi Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)) Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Logical Time for Formal Embedded System Design (KAIROS) Inria Sophia Antipolis - Méditerranée (CRISAM) Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA) Paris, France 2020-06-29 https://hal.science/hal-02573605 https://hal.science/hal-02573605v1/document https://hal.science/hal-02573605v1/file/article.pdf https://doi.org/10.4230/LIPIcs.FSCD.2020 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/doi/10.4230/LIPIcs.FSCD.2020 doi:10.4230/LIPIcs.FSCD.2020 info:eu-repo/semantics/OpenAccess FSCD 2020 - 5th International Conference on Formal Structures for Computation and Deduction https://hal.science/hal-02573605 FSCD 2020 - 5th International Conference on Formal Structures for Computation and Deduction, Jun 2020, Paris, France. ⟨10.4230/LIPIcs.FSCD.2020⟩ 2012 ACM Subject Classification Theory of computation → Lambda calculus Theory of computation → Proof theory Keywords and phrases Intersection types Union types Dependent types Subtyping Type checker Refiner ∆-Framework [INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL] [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] info:eu-repo/semantics/conferenceObject Conference papers 2020 ftunivrennes1hal https://doi.org/10.4230/LIPIcs.FSCD.2020 2024-11-01T01:13:23Z International audience We present the syntax, semantics, typing, subtyping, unification, refinement, and REPL of Bull, a prototype theorem prover based on the ∆-Framework, i.e. a fully-typed Logical Framework à la Edinburgh LF decorated with union and intersection types, as described in previous papers by the authors. Bull also implements a subtyping algorithm for the Type Theory Ξ of Barbanera-Dezani-de'Liguoro. Bull has a command-line interface where the user can declare axioms, terms, and perform computations and some basic terminal-style features like error pretty-printing, subexpressions highlighting, and file loading. Moreover, it can typecheck a proof or normalize it. These terms can be incomplete, therefore the typechecking algorithm uses unification to try to construct the missing subterms. Bull uses the syntax of Berardi's Pure Type Systems to improve the compactness and the modularity of the kernel. Abstract and concrete syntax are mostly aligned and similar to the concrete syntax of Coq. Bull uses a higher-order unification algorithm for terms, while typechecking and partial type inference are done by a bidirectional refinement algorithm, similar to the one found in Matita and Beluga. The refinement can be split into two parts: the essence refinement and the typing refinement. Binders are implemented using commonly-used de Bruijn indices. We have defined a concrete language syntax that will allow user to write ∆-terms. We have defined the reduction rules and an evaluator. We have implemented from scratch a refiner which does partial typechecking and type reconstruction. We have experimented Bull with classical examples of the intersection and union literature, such as the ones formalized by Pfenning with his Refinement Types in LF and by Pierce. We hope that this research vein could be useful to experiment, in a proof theoretical setting, forms of polymorphism alternatives to Girard's parametric one. Conference Object Beluga Beluga* Université de Rennes 1: Publications scientifiques (HAL) Lambda ENVELOPE(-62.983,-62.983,-64.300,-64.300)
spellingShingle 2012 ACM Subject Classification Theory of computation → Lambda calculus
Theory of computation → Proof theory Keywords and phrases Intersection types
Union types
Dependent types
Subtyping
Type checker
Refiner
∆-Framework
[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL]
[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO]
Stolze, Claude
Liquori, Luigi
A Type Checker for a Logical Framework with Union and Intersection Types
title A Type Checker for a Logical Framework with Union and Intersection Types
title_full A Type Checker for a Logical Framework with Union and Intersection Types
title_fullStr A Type Checker for a Logical Framework with Union and Intersection Types
title_full_unstemmed A Type Checker for a Logical Framework with Union and Intersection Types
title_short A Type Checker for a Logical Framework with Union and Intersection Types
title_sort type checker for a logical framework with union and intersection types
topic 2012 ACM Subject Classification Theory of computation → Lambda calculus
Theory of computation → Proof theory Keywords and phrases Intersection types
Union types
Dependent types
Subtyping
Type checker
Refiner
∆-Framework
[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL]
[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO]
topic_facet 2012 ACM Subject Classification Theory of computation → Lambda calculus
Theory of computation → Proof theory Keywords and phrases Intersection types
Union types
Dependent types
Subtyping
Type checker
Refiner
∆-Framework
[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL]
[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO]
url https://hal.science/hal-02573605
https://hal.science/hal-02573605v1/document
https://hal.science/hal-02573605v1/file/article.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2020