Titan's neutral atmosphere seasonal variations up to the end of the Cassini mission

International audience In this paper we report new results concerning the seasonal atmospheric evolution near Titan's poles and equator in terms of temperature and composition using nadir spectra acquired by the Cassini Composite Infrared Spectrometer (CIRS) at high spectral resolution during t...

Full description

Bibliographic Details
Published in:Icarus
Main Authors: Coustenis, A., Jennings, D.E., Achterberg, R.K., Lavvas, P., Bampasidis, G., Nixon, C.A., Flasar, F.M.
Other Authors: Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), NASA Goddard Space Flight Center (GSFC), Science Systems and Applications, Inc. Lanham (SSAI), Groupe de spectrométrie moléculaire et atmosphérique (GSMA), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), National and Kapodistrian University of Athens (NKUA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-02354914
https://hal.science/hal-02354914/document
https://hal.science/hal-02354914/file/CIRS_Titan_poles%20until%202017_revised2.pdf
https://doi.org/10.1016/j.icarus.2019.113413
id ftunivreimsca:oai:HAL:hal-02354914v1
record_format openpolar
spelling ftunivreimsca:oai:HAL:hal-02354914v1 2024-05-19T07:48:42+00:00 Titan's neutral atmosphere seasonal variations up to the end of the Cassini mission Coustenis, A. Jennings, D.E. Achterberg, R.K. Lavvas, P. Bampasidis, G. Nixon, C.A. Flasar, F.M. Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) NASA Goddard Space Flight Center (GSFC) Science Systems and Applications, Inc. Lanham (SSAI) Groupe de spectrométrie moléculaire et atmosphérique (GSMA) Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS) National and Kapodistrian University of Athens (NKUA) 2020-06 https://hal.science/hal-02354914 https://hal.science/hal-02354914/document https://hal.science/hal-02354914/file/CIRS_Titan_poles%20until%202017_revised2.pdf https://doi.org/10.1016/j.icarus.2019.113413 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.icarus.2019.113413 hal-02354914 https://hal.science/hal-02354914 https://hal.science/hal-02354914/document https://hal.science/hal-02354914/file/CIRS_Titan_poles%20until%202017_revised2.pdf doi:10.1016/j.icarus.2019.113413 info:eu-repo/semantics/OpenAccess ISSN: 0019-1035 EISSN: 1090-2643 Icarus https://hal.science/hal-02354914 Icarus, 2020, 344 (1), pp.113413. ⟨10.1016/j.icarus.2019.113413⟩ atmosphere Satellites Titan Titan atmospheres Spectroscopy Radiative transfer [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/article Journal articles 2020 ftunivreimsca https://doi.org/10.1016/j.icarus.2019.113413 2024-04-24T00:43:40Z International audience In this paper we report new results concerning the seasonal atmospheric evolution near Titan's poles and equator in terms of temperature and composition using nadir spectra acquired by the Cassini Composite Infrared Spectrometer (CIRS) at high spectral resolution during the last year of the Cassini mission in 2017 complementing previous investigations covering almost two Titan seasons. In recent previous papers (Coustenis et al., 2016, 2018), we have reported on monitoring of Titan's stratosphere near the poles after the mid-2009 northern spring equinox. In particular we have reported on the observed strong temperature decrease and compositional enhancement above Titan's southern polar latitudes since 2012 and until 2014 of several trace species, such as complex hydrocarbons and nitriles, which were previously observed only at high northern latitudes. This effect accompanied the transition of Titan's seasons from northern winter in 2002 to northern summer in 2017, while at that latter time, the southern hemisphere was entering winter. Our new data, acquired in 2017 and analyzed here, are important because they are the only ones recorded since 2014 close to the south pole in the mid-infrared nadir mode at high resolution. A large temperature increase in the southern polar stratosphere (by 10-50 K in the 0.1 mbar-0.01 mbar pressure range) is found associated with a change in the temperature profile's shape. The 2017 observations also show a related significant decrease in most of the southern abundances which must have started sometime between 2014 and 2017. For the north, the spectra indicate a continuation of the decrease of the abundances which we first reported to have started in 2015 and small temperature variations. We discuss comparisons with other results and with current photochemical and dynamical models which could be updated and improved by the new constraints set by the findings presented here. Article in Journal/Newspaper South pole Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL) Icarus 344 113413
institution Open Polar
collection Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)
op_collection_id ftunivreimsca
language English
topic atmosphere Satellites
Titan Titan
atmospheres Spectroscopy Radiative transfer
[SDU]Sciences of the Universe [physics]
spellingShingle atmosphere Satellites
Titan Titan
atmospheres Spectroscopy Radiative transfer
[SDU]Sciences of the Universe [physics]
Coustenis, A.
Jennings, D.E.
Achterberg, R.K.
Lavvas, P.
Bampasidis, G.
Nixon, C.A.
Flasar, F.M.
Titan's neutral atmosphere seasonal variations up to the end of the Cassini mission
topic_facet atmosphere Satellites
Titan Titan
atmospheres Spectroscopy Radiative transfer
[SDU]Sciences of the Universe [physics]
description International audience In this paper we report new results concerning the seasonal atmospheric evolution near Titan's poles and equator in terms of temperature and composition using nadir spectra acquired by the Cassini Composite Infrared Spectrometer (CIRS) at high spectral resolution during the last year of the Cassini mission in 2017 complementing previous investigations covering almost two Titan seasons. In recent previous papers (Coustenis et al., 2016, 2018), we have reported on monitoring of Titan's stratosphere near the poles after the mid-2009 northern spring equinox. In particular we have reported on the observed strong temperature decrease and compositional enhancement above Titan's southern polar latitudes since 2012 and until 2014 of several trace species, such as complex hydrocarbons and nitriles, which were previously observed only at high northern latitudes. This effect accompanied the transition of Titan's seasons from northern winter in 2002 to northern summer in 2017, while at that latter time, the southern hemisphere was entering winter. Our new data, acquired in 2017 and analyzed here, are important because they are the only ones recorded since 2014 close to the south pole in the mid-infrared nadir mode at high resolution. A large temperature increase in the southern polar stratosphere (by 10-50 K in the 0.1 mbar-0.01 mbar pressure range) is found associated with a change in the temperature profile's shape. The 2017 observations also show a related significant decrease in most of the southern abundances which must have started sometime between 2014 and 2017. For the north, the spectra indicate a continuation of the decrease of the abundances which we first reported to have started in 2015 and small temperature variations. We discuss comparisons with other results and with current photochemical and dynamical models which could be updated and improved by the new constraints set by the findings presented here.
author2 Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
NASA Goddard Space Flight Center (GSFC)
Science Systems and Applications, Inc. Lanham (SSAI)
Groupe de spectrométrie moléculaire et atmosphérique (GSMA)
Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)
National and Kapodistrian University of Athens (NKUA)
format Article in Journal/Newspaper
author Coustenis, A.
Jennings, D.E.
Achterberg, R.K.
Lavvas, P.
Bampasidis, G.
Nixon, C.A.
Flasar, F.M.
author_facet Coustenis, A.
Jennings, D.E.
Achterberg, R.K.
Lavvas, P.
Bampasidis, G.
Nixon, C.A.
Flasar, F.M.
author_sort Coustenis, A.
title Titan's neutral atmosphere seasonal variations up to the end of the Cassini mission
title_short Titan's neutral atmosphere seasonal variations up to the end of the Cassini mission
title_full Titan's neutral atmosphere seasonal variations up to the end of the Cassini mission
title_fullStr Titan's neutral atmosphere seasonal variations up to the end of the Cassini mission
title_full_unstemmed Titan's neutral atmosphere seasonal variations up to the end of the Cassini mission
title_sort titan's neutral atmosphere seasonal variations up to the end of the cassini mission
publisher HAL CCSD
publishDate 2020
url https://hal.science/hal-02354914
https://hal.science/hal-02354914/document
https://hal.science/hal-02354914/file/CIRS_Titan_poles%20until%202017_revised2.pdf
https://doi.org/10.1016/j.icarus.2019.113413
genre South pole
genre_facet South pole
op_source ISSN: 0019-1035
EISSN: 1090-2643
Icarus
https://hal.science/hal-02354914
Icarus, 2020, 344 (1), pp.113413. ⟨10.1016/j.icarus.2019.113413⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.icarus.2019.113413
hal-02354914
https://hal.science/hal-02354914
https://hal.science/hal-02354914/document
https://hal.science/hal-02354914/file/CIRS_Titan_poles%20until%202017_revised2.pdf
doi:10.1016/j.icarus.2019.113413
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1016/j.icarus.2019.113413
container_title Icarus
container_volume 344
container_start_page 113413
_version_ 1799467013313134592