Inverse modeling of global and regional energy and water cycle fluxes using Earth observation data

The NASA Energy and Water Cycle Study (NEWS) climatology is a self-consistent coupled annual and seasonal cycle solution for radiative, turbulent and water fluxes over the Earth's surface using Earth observation data covering 2000-2009. Here we seek to improve the NEWS solution, particularly ov...

Full description

Bibliographic Details
Published in:Journal of Climate
Main Authors: Thomas, Chris M., Dong, Bo, Haines, Keith
Format: Article in Journal/Newspaper
Language:English
Published: American Meteorological Society 2020
Subjects:
Online Access:https://centaur.reading.ac.uk/87061/
https://centaur.reading.ac.uk/87061/19/jcli-d-19-0343.1.pdf
https://centaur.reading.ac.uk/87061/9/ThomasEtAl2019.pdf
https://centaur.reading.ac.uk/87061/1/Correlated_energy_paper___for_centaur.pdf
https://doi.org/10.1175/JCLI-D-19-0343.1
id ftunivreading:oai:centaur.reading.ac.uk:87061
record_format openpolar
spelling ftunivreading:oai:centaur.reading.ac.uk:87061 2024-05-19T07:36:30+00:00 Inverse modeling of global and regional energy and water cycle fluxes using Earth observation data Thomas, Chris M. Dong, Bo Haines, Keith 2020-03 text https://centaur.reading.ac.uk/87061/ https://centaur.reading.ac.uk/87061/19/jcli-d-19-0343.1.pdf https://centaur.reading.ac.uk/87061/9/ThomasEtAl2019.pdf https://centaur.reading.ac.uk/87061/1/Correlated_energy_paper___for_centaur.pdf https://doi.org/10.1175/JCLI-D-19-0343.1 en eng American Meteorological Society https://centaur.reading.ac.uk/87061/19/jcli-d-19-0343.1.pdf https://centaur.reading.ac.uk/87061/9/ThomasEtAl2019.pdf https://centaur.reading.ac.uk/87061/1/Correlated_energy_paper___for_centaur.pdf Thomas, C. M. <https://centaur.reading.ac.uk/view/creators/90006592.html>, Dong, B. <https://centaur.reading.ac.uk/view/creators/90008523.html> and Haines, K. <https://centaur.reading.ac.uk/view/creators/90000002.html> orcid:0000-0003-2768-2374 (2020) Inverse modeling of global and regional energy and water cycle fluxes using Earth observation data. Journal of Climate, 33 (5). pp. 1707-1723. ISSN 1520-0442 doi: https://doi.org/10.1175/JCLI-D-19-0343.1 <https://doi.org/10.1175/JCLI-D-19-0343.1> cc_by_4 Article PeerReviewed 2020 ftunivreading https://doi.org/10.1175/JCLI-D-19-0343.1 2024-05-01T00:23:28Z The NASA Energy and Water Cycle Study (NEWS) climatology is a self-consistent coupled annual and seasonal cycle solution for radiative, turbulent and water fluxes over the Earth's surface using Earth observation data covering 2000-2009. Here we seek to improve the NEWS solution, particularly over the ocean basins, by considering spatial covariances in the observation errors (some evidence for which is found by comparing five turbulent flux products over the oceans) and by introducing additional horizontal transports from ocean reanalyses as weak constraints. By explicitly representing large error covariances between surface heat flux components over the major ocean basins we retain the flux contrasts present in the original data and infer additional heat losses over the North Atlantic, more consistent with a strong Atlantic overturning. This change does not alter the global flux balance but if only the errors in evaporation and precipitation are correlated then those fluxes experience larger adjustments (e.g. the surface latent heat flux increases to 85 +- 2 Wm). Replacing SeaFlux v1 with J-OFURO v3 ocean fluxes also leads to a considerable increase in the global latent heat loss as well as a larger North Atlantic heat loss. Furthermore, including a weak constraint on the horizontal transports of heat and freshwater from high-resolution ocean reanalyses improves the net fluxes over the North Atlantic, Caribbean and Arctic Oceans, without any impact on the global flux balances. These results suggest that better characterised flux uncertainties can greatly improve the quality of the optimised flux solution. Article in Journal/Newspaper Arctic North Atlantic CentAUR: Central Archive at the University of Reading Journal of Climate 33 5 1707 1723
institution Open Polar
collection CentAUR: Central Archive at the University of Reading
op_collection_id ftunivreading
language English
description The NASA Energy and Water Cycle Study (NEWS) climatology is a self-consistent coupled annual and seasonal cycle solution for radiative, turbulent and water fluxes over the Earth's surface using Earth observation data covering 2000-2009. Here we seek to improve the NEWS solution, particularly over the ocean basins, by considering spatial covariances in the observation errors (some evidence for which is found by comparing five turbulent flux products over the oceans) and by introducing additional horizontal transports from ocean reanalyses as weak constraints. By explicitly representing large error covariances between surface heat flux components over the major ocean basins we retain the flux contrasts present in the original data and infer additional heat losses over the North Atlantic, more consistent with a strong Atlantic overturning. This change does not alter the global flux balance but if only the errors in evaporation and precipitation are correlated then those fluxes experience larger adjustments (e.g. the surface latent heat flux increases to 85 +- 2 Wm). Replacing SeaFlux v1 with J-OFURO v3 ocean fluxes also leads to a considerable increase in the global latent heat loss as well as a larger North Atlantic heat loss. Furthermore, including a weak constraint on the horizontal transports of heat and freshwater from high-resolution ocean reanalyses improves the net fluxes over the North Atlantic, Caribbean and Arctic Oceans, without any impact on the global flux balances. These results suggest that better characterised flux uncertainties can greatly improve the quality of the optimised flux solution.
format Article in Journal/Newspaper
author Thomas, Chris M.
Dong, Bo
Haines, Keith
spellingShingle Thomas, Chris M.
Dong, Bo
Haines, Keith
Inverse modeling of global and regional energy and water cycle fluxes using Earth observation data
author_facet Thomas, Chris M.
Dong, Bo
Haines, Keith
author_sort Thomas, Chris M.
title Inverse modeling of global and regional energy and water cycle fluxes using Earth observation data
title_short Inverse modeling of global and regional energy and water cycle fluxes using Earth observation data
title_full Inverse modeling of global and regional energy and water cycle fluxes using Earth observation data
title_fullStr Inverse modeling of global and regional energy and water cycle fluxes using Earth observation data
title_full_unstemmed Inverse modeling of global and regional energy and water cycle fluxes using Earth observation data
title_sort inverse modeling of global and regional energy and water cycle fluxes using earth observation data
publisher American Meteorological Society
publishDate 2020
url https://centaur.reading.ac.uk/87061/
https://centaur.reading.ac.uk/87061/19/jcli-d-19-0343.1.pdf
https://centaur.reading.ac.uk/87061/9/ThomasEtAl2019.pdf
https://centaur.reading.ac.uk/87061/1/Correlated_energy_paper___for_centaur.pdf
https://doi.org/10.1175/JCLI-D-19-0343.1
genre Arctic
North Atlantic
genre_facet Arctic
North Atlantic
op_relation https://centaur.reading.ac.uk/87061/19/jcli-d-19-0343.1.pdf
https://centaur.reading.ac.uk/87061/9/ThomasEtAl2019.pdf
https://centaur.reading.ac.uk/87061/1/Correlated_energy_paper___for_centaur.pdf
Thomas, C. M. <https://centaur.reading.ac.uk/view/creators/90006592.html>, Dong, B. <https://centaur.reading.ac.uk/view/creators/90008523.html> and Haines, K. <https://centaur.reading.ac.uk/view/creators/90000002.html> orcid:0000-0003-2768-2374 (2020) Inverse modeling of global and regional energy and water cycle fluxes using Earth observation data. Journal of Climate, 33 (5). pp. 1707-1723. ISSN 1520-0442 doi: https://doi.org/10.1175/JCLI-D-19-0343.1 <https://doi.org/10.1175/JCLI-D-19-0343.1>
op_rights cc_by_4
op_doi https://doi.org/10.1175/JCLI-D-19-0343.1
container_title Journal of Climate
container_volume 33
container_issue 5
container_start_page 1707
op_container_end_page 1723
_version_ 1799475627627118592