Snowball Earth climate dynamics and Cryogenian geology–geobiology

Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during the long‐lived Sturtian (717–659 Ma) and Marinoan (ca 645–635 Ma) glaciations. Combined U-­‐Pb and Re-­‐Os geochronology suggests that the Sturtian glacial onset and both terminations were globally synch...

Full description

Bibliographic Details
Published in:Science Advances
Main Authors: Hoffman, Paul F., Abbot, Dorian S., Ashkenazy, Yosef, Benn, Douglas I., Brocks, Jochen J., Cohen, Phoebe A., Cox, Grant M., Creveling, Jessica R., Donnadieu, Yannick, Erwin, Douglas H., Fairchild, Ian J., Ferreira, David, Goodman, Jason C., Halverson, Galen P., Jansen, Malte F., Le Hir, Guillaume, Love, Gordon D., Macdonald, Francis A., Maloof, Adam C., Partin, Camille A., Ramstein, Gilles, Rose, Brian E. J., Rose, Catherine V., Sadler, Peter M., Tziperman, Eli, Voigt, Aiko, Warren, Stephen G.
Format: Article in Journal/Newspaper
Language:English
Published: American Association for the Advancement of Science 2017
Subjects:
Online Access:https://centaur.reading.ac.uk/72249/
https://centaur.reading.ac.uk/72249/1/e1600983.full.pdf
id ftunivreading:oai:centaur.reading.ac.uk:72249
record_format openpolar
spelling ftunivreading:oai:centaur.reading.ac.uk:72249 2024-06-23T07:53:47+00:00 Snowball Earth climate dynamics and Cryogenian geology–geobiology Hoffman, Paul F. Abbot, Dorian S. Ashkenazy, Yosef Benn, Douglas I. Brocks, Jochen J. Cohen, Phoebe A. Cox, Grant M. Creveling, Jessica R. Donnadieu, Yannick Erwin, Douglas H. Fairchild, Ian J. Ferreira, David Goodman, Jason C. Halverson, Galen P. Jansen, Malte F. Le Hir, Guillaume Love, Gordon D. Macdonald, Francis A. Maloof, Adam C. Partin, Camille A. Ramstein, Gilles Rose, Brian E. J. Rose, Catherine V. Sadler, Peter M. Tziperman, Eli Voigt, Aiko Warren, Stephen G. 2017-11-01 text https://centaur.reading.ac.uk/72249/ https://centaur.reading.ac.uk/72249/1/e1600983.full.pdf en eng American Association for the Advancement of Science https://centaur.reading.ac.uk/72249/1/e1600983.full.pdf Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., Benn, D. I., Brocks, J. J., Cohen, P. A., Cox, G. M., Creveling, J. R., Donnadieu, Y., Erwin, D. H., Fairchild, I. J., Ferreira, D. <https://centaur.reading.ac.uk/view/creators/90005370.html> orcid:0000-0003-3243-9774 , Goodman, J. C., Halverson, G. P., Jansen, M. F., Le Hir, G., Love, G. D., Macdonald, F. A., Maloof, A. C., Partin, C. A., Ramstein, G., Rose, B. E. J., Rose, C. V., Sadler, P. M., Tziperman, E., Voigt, A. and Warren, S. G. (2017) Snowball Earth climate dynamics and Cryogenian geology–geobiology. Science Advances, 3 (11). e1600983. ISSN 2375-2548 doi: https://doi.org/10.1126/sciadv.1600983 <https://doi.org/10.1126/sciadv.1600983> cc_by_nc_4 Article PeerReviewed 2017 ftunivreading https://doi.org/10.1126/sciadv.1600983 2024-06-11T15:06:49Z Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during the long‐lived Sturtian (717–659 Ma) and Marinoan (ca 645–635 Ma) glaciations. Combined U-­‐Pb and Re-­‐Os geochronology suggests that the Sturtian glacial onset and both terminations were globally synchronous. Geochemical data imply that atmospheric pCO2 was 102x modern at the Marinoan termination, consistent with Snowball Earth hysteresis. Sturtian glaciation followed the breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual-mean Hadley circulation, resulting in equatorial net sublimation and net deposition elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freeze-on and melting. Tropical ice sheets flow faster as CO2 rises, but lose mass and become sensitive to orbital forcing. Dust accumulation in the equatorial zone engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and many eukaryotes. Meltwater flushing through moulins enables organic burial and submarine deposition of subaerially-­‐erupted volcanic ash. The subglacial ocean is turbulent and well­‐mixed, in response to geothermal heating and conductive heat loss through the ice cover, increasing with latitude. Cap carbonates, unique to Snowball Earth terminations, are products of intense weathering and ocean stratification. Whole-­ocean warming and ice-sheet forebulge collapse allow marine coastal inundations to progress long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms. Article in Journal/Newspaper Ice Sheet CentAUR: Central Archive at the University of Reading Science Advances 3 11 e1600983
institution Open Polar
collection CentAUR: Central Archive at the University of Reading
op_collection_id ftunivreading
language English
description Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during the long‐lived Sturtian (717–659 Ma) and Marinoan (ca 645–635 Ma) glaciations. Combined U-­‐Pb and Re-­‐Os geochronology suggests that the Sturtian glacial onset and both terminations were globally synchronous. Geochemical data imply that atmospheric pCO2 was 102x modern at the Marinoan termination, consistent with Snowball Earth hysteresis. Sturtian glaciation followed the breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual-mean Hadley circulation, resulting in equatorial net sublimation and net deposition elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freeze-on and melting. Tropical ice sheets flow faster as CO2 rises, but lose mass and become sensitive to orbital forcing. Dust accumulation in the equatorial zone engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and many eukaryotes. Meltwater flushing through moulins enables organic burial and submarine deposition of subaerially-­‐erupted volcanic ash. The subglacial ocean is turbulent and well­‐mixed, in response to geothermal heating and conductive heat loss through the ice cover, increasing with latitude. Cap carbonates, unique to Snowball Earth terminations, are products of intense weathering and ocean stratification. Whole-­ocean warming and ice-sheet forebulge collapse allow marine coastal inundations to progress long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms.
format Article in Journal/Newspaper
author Hoffman, Paul F.
Abbot, Dorian S.
Ashkenazy, Yosef
Benn, Douglas I.
Brocks, Jochen J.
Cohen, Phoebe A.
Cox, Grant M.
Creveling, Jessica R.
Donnadieu, Yannick
Erwin, Douglas H.
Fairchild, Ian J.
Ferreira, David
Goodman, Jason C.
Halverson, Galen P.
Jansen, Malte F.
Le Hir, Guillaume
Love, Gordon D.
Macdonald, Francis A.
Maloof, Adam C.
Partin, Camille A.
Ramstein, Gilles
Rose, Brian E. J.
Rose, Catherine V.
Sadler, Peter M.
Tziperman, Eli
Voigt, Aiko
Warren, Stephen G.
spellingShingle Hoffman, Paul F.
Abbot, Dorian S.
Ashkenazy, Yosef
Benn, Douglas I.
Brocks, Jochen J.
Cohen, Phoebe A.
Cox, Grant M.
Creveling, Jessica R.
Donnadieu, Yannick
Erwin, Douglas H.
Fairchild, Ian J.
Ferreira, David
Goodman, Jason C.
Halverson, Galen P.
Jansen, Malte F.
Le Hir, Guillaume
Love, Gordon D.
Macdonald, Francis A.
Maloof, Adam C.
Partin, Camille A.
Ramstein, Gilles
Rose, Brian E. J.
Rose, Catherine V.
Sadler, Peter M.
Tziperman, Eli
Voigt, Aiko
Warren, Stephen G.
Snowball Earth climate dynamics and Cryogenian geology–geobiology
author_facet Hoffman, Paul F.
Abbot, Dorian S.
Ashkenazy, Yosef
Benn, Douglas I.
Brocks, Jochen J.
Cohen, Phoebe A.
Cox, Grant M.
Creveling, Jessica R.
Donnadieu, Yannick
Erwin, Douglas H.
Fairchild, Ian J.
Ferreira, David
Goodman, Jason C.
Halverson, Galen P.
Jansen, Malte F.
Le Hir, Guillaume
Love, Gordon D.
Macdonald, Francis A.
Maloof, Adam C.
Partin, Camille A.
Ramstein, Gilles
Rose, Brian E. J.
Rose, Catherine V.
Sadler, Peter M.
Tziperman, Eli
Voigt, Aiko
Warren, Stephen G.
author_sort Hoffman, Paul F.
title Snowball Earth climate dynamics and Cryogenian geology–geobiology
title_short Snowball Earth climate dynamics and Cryogenian geology–geobiology
title_full Snowball Earth climate dynamics and Cryogenian geology–geobiology
title_fullStr Snowball Earth climate dynamics and Cryogenian geology–geobiology
title_full_unstemmed Snowball Earth climate dynamics and Cryogenian geology–geobiology
title_sort snowball earth climate dynamics and cryogenian geology–geobiology
publisher American Association for the Advancement of Science
publishDate 2017
url https://centaur.reading.ac.uk/72249/
https://centaur.reading.ac.uk/72249/1/e1600983.full.pdf
genre Ice Sheet
genre_facet Ice Sheet
op_relation https://centaur.reading.ac.uk/72249/1/e1600983.full.pdf
Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., Benn, D. I., Brocks, J. J., Cohen, P. A., Cox, G. M., Creveling, J. R., Donnadieu, Y., Erwin, D. H., Fairchild, I. J., Ferreira, D. <https://centaur.reading.ac.uk/view/creators/90005370.html> orcid:0000-0003-3243-9774 , Goodman, J. C., Halverson, G. P., Jansen, M. F., Le Hir, G., Love, G. D., Macdonald, F. A., Maloof, A. C., Partin, C. A., Ramstein, G., Rose, B. E. J., Rose, C. V., Sadler, P. M., Tziperman, E., Voigt, A. and Warren, S. G. (2017) Snowball Earth climate dynamics and Cryogenian geology–geobiology. Science Advances, 3 (11). e1600983. ISSN 2375-2548 doi: https://doi.org/10.1126/sciadv.1600983 <https://doi.org/10.1126/sciadv.1600983>
op_rights cc_by_nc_4
op_doi https://doi.org/10.1126/sciadv.1600983
container_title Science Advances
container_volume 3
container_issue 11
container_start_page e1600983
_version_ 1802645610660102144