Systematic prey preference by introduced mice exhausts the ecosystem on Antipodes Island

House mice (Mus musculus) are a widespread invasive species on islands. Where they are the sole introduced mammal they can have particularly strong negative impacts on recipient ecosystems. House mice impacts have been documented on almost every component of the terrestrial ecosystem on Southern Oce...

Full description

Bibliographic Details
Published in:Biological Invasions
Main Authors: Russell, James C., Peace, Joanne E., Houghton, Melissa J., Bury, Sarah J., Bodey, Thomas W.
Format: Article in Journal/Newspaper
Language:English
Published: Springer 2020
Subjects:
Online Access:https://espace.library.uq.edu.au/view/UQ:fd72128
Description
Summary:House mice (Mus musculus) are a widespread invasive species on islands. Where they are the sole introduced mammal they can have particularly strong negative impacts on recipient ecosystems. House mice impacts have been documented on almost every component of the terrestrial ecosystem on Southern Ocean islands, including plants, invertebrates, birds and ecosystem function. We undertook a comprehensive study to determine the impacts of house mice on Antipodes Island, New Zealand. This study was done prior to mouse eradication to inform monitoring and restoration. We used invertebrate pitfall trapping on the main Antipodes Island and neighbouring mouse-free offshore islands together with mouse stomach contents and stable isotope analyses of mouse livers to examine dietary preferences. We identified directly impacted and consumed invertebrate Orders relative to their abundance and provided a comprehensive picture of resource flow and overlap in the invaded terrestrial ecosystem. The remote terrestrial ecosystem of Antipodes Island was tightly circumscribed with strong resource overlap. Mouse diet varied seasonally with resource availability, dominated by invertebrates and land birds in summer, and plants and seabirds in winter. Invertebrates that were preferentially preyed upon were Amphipoda, Lepidoptera and some species of Coleoptera. These patterns suggest the ecosystem is annually driven by a seasonal bottom-up resource pulse over summer, where mice are a selective predator, differentially preying on invertebrates relative to invertebrate abundance. Mice appear to be exhausting preferred prey as they systematically consume their way through the terrestrial ecosystem. Land bird diet also varied seasonally and some of these birds likely competed with mice for invertebrate prey. Eradication of mice from Antipodes Island should reduce the predation on invertebrates and reduce the effects of competition and predation on land birds. This should have flow-on effects to the abundance of invertebrates and endemic land bird sub-species of pipit and snipe.