Genome-centric view of carbon processing in thawing permafrost

As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 2...

Full description

Bibliographic Details
Published in:Nature
Main Authors: Woodcroft, Ben J., Singleton, Caitlin M., Boyd, Joel A., Evans, Paul N., Emerson, Joanne B., Zayed, Ahmed A. F., Hoelzle, Robert D., Lamberton, Timothy O., McCalley, Carmody K., Hodgkins, Suzanne B., Wilson, Rachel M., Purvine, Samuel O., Nicora, Carrie D., Li, Changsheng, Frolking, Steve, Chanton, Jeffrey P., Crill, Patrick M., Saleska, Scott R., Rich, Virginia I., Tyson, Gene W.
Format: Article in Journal/Newspaper
Language:English
Published: Nature Publishing Group 2018
Subjects:
Online Access:https://espace.library.uq.edu.au/view/UQ:7a0cd18
id ftunivqespace:oai:espace.library.uq.edu.au:UQ:7a0cd18
record_format openpolar
spelling ftunivqespace:oai:espace.library.uq.edu.au:UQ:7a0cd18 2023-05-15T17:55:53+02:00 Genome-centric view of carbon processing in thawing permafrost Woodcroft, Ben J. Singleton, Caitlin M. Boyd, Joel A. Evans, Paul N. Emerson, Joanne B. Zayed, Ahmed A. F. Hoelzle, Robert D. Lamberton, Timothy O. McCalley, Carmody K. Hodgkins, Suzanne B. Wilson, Rachel M. Purvine, Samuel O. Nicora, Carrie D. Li, Changsheng Frolking, Steve Chanton, Jeffrey P. Crill, Patrick M. Saleska, Scott R. Rich, Virginia I. Tyson, Gene W. 2018-07-16 https://espace.library.uq.edu.au/view/UQ:7a0cd18 eng eng Nature Publishing Group doi:10.1038/s41586-018-0338-1 issn:1476-4687 issn:0028-0836 orcid:0000-0003-0670-7480 orcid:0000-0001-9688-8208 orcid:0000-0003-0834-2374 orcid:0000-0001-5995-2602 orcid:0000-0001-5131-8041 orcid:0000-0001-8559-9427 DE-SC0004632 DE160100248 FT170100070 DE-AC02-05CH11231 DE-AC05-76RL01830 Comparison Project Wetchimp Global Wetland Extent Metatranscriptomic Analysis Saccharomyces-Cerevisiae Microbial Diversity Methane Production Present State Single Cells Soil Database 1000 General Journal Article 2018 ftunivqespace https://doi.org/10.1038/s41586-018-0338-1 2020-12-29T00:47:19Z As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems. Article in Journal/Newspaper permafrost The University of Queensland: UQ eSpace Nature 560 7716 49 54
institution Open Polar
collection The University of Queensland: UQ eSpace
op_collection_id ftunivqespace
language English
topic Comparison Project Wetchimp
Global Wetland Extent
Metatranscriptomic Analysis
Saccharomyces-Cerevisiae
Microbial Diversity
Methane Production
Present State
Single Cells
Soil
Database
1000 General
spellingShingle Comparison Project Wetchimp
Global Wetland Extent
Metatranscriptomic Analysis
Saccharomyces-Cerevisiae
Microbial Diversity
Methane Production
Present State
Single Cells
Soil
Database
1000 General
Woodcroft, Ben J.
Singleton, Caitlin M.
Boyd, Joel A.
Evans, Paul N.
Emerson, Joanne B.
Zayed, Ahmed A. F.
Hoelzle, Robert D.
Lamberton, Timothy O.
McCalley, Carmody K.
Hodgkins, Suzanne B.
Wilson, Rachel M.
Purvine, Samuel O.
Nicora, Carrie D.
Li, Changsheng
Frolking, Steve
Chanton, Jeffrey P.
Crill, Patrick M.
Saleska, Scott R.
Rich, Virginia I.
Tyson, Gene W.
Genome-centric view of carbon processing in thawing permafrost
topic_facet Comparison Project Wetchimp
Global Wetland Extent
Metatranscriptomic Analysis
Saccharomyces-Cerevisiae
Microbial Diversity
Methane Production
Present State
Single Cells
Soil
Database
1000 General
description As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.
format Article in Journal/Newspaper
author Woodcroft, Ben J.
Singleton, Caitlin M.
Boyd, Joel A.
Evans, Paul N.
Emerson, Joanne B.
Zayed, Ahmed A. F.
Hoelzle, Robert D.
Lamberton, Timothy O.
McCalley, Carmody K.
Hodgkins, Suzanne B.
Wilson, Rachel M.
Purvine, Samuel O.
Nicora, Carrie D.
Li, Changsheng
Frolking, Steve
Chanton, Jeffrey P.
Crill, Patrick M.
Saleska, Scott R.
Rich, Virginia I.
Tyson, Gene W.
author_facet Woodcroft, Ben J.
Singleton, Caitlin M.
Boyd, Joel A.
Evans, Paul N.
Emerson, Joanne B.
Zayed, Ahmed A. F.
Hoelzle, Robert D.
Lamberton, Timothy O.
McCalley, Carmody K.
Hodgkins, Suzanne B.
Wilson, Rachel M.
Purvine, Samuel O.
Nicora, Carrie D.
Li, Changsheng
Frolking, Steve
Chanton, Jeffrey P.
Crill, Patrick M.
Saleska, Scott R.
Rich, Virginia I.
Tyson, Gene W.
author_sort Woodcroft, Ben J.
title Genome-centric view of carbon processing in thawing permafrost
title_short Genome-centric view of carbon processing in thawing permafrost
title_full Genome-centric view of carbon processing in thawing permafrost
title_fullStr Genome-centric view of carbon processing in thawing permafrost
title_full_unstemmed Genome-centric view of carbon processing in thawing permafrost
title_sort genome-centric view of carbon processing in thawing permafrost
publisher Nature Publishing Group
publishDate 2018
url https://espace.library.uq.edu.au/view/UQ:7a0cd18
genre permafrost
genre_facet permafrost
op_relation doi:10.1038/s41586-018-0338-1
issn:1476-4687
issn:0028-0836
orcid:0000-0003-0670-7480
orcid:0000-0001-9688-8208
orcid:0000-0003-0834-2374
orcid:0000-0001-5995-2602
orcid:0000-0001-5131-8041
orcid:0000-0001-8559-9427
DE-SC0004632
DE160100248
FT170100070
DE-AC02-05CH11231
DE-AC05-76RL01830
op_doi https://doi.org/10.1038/s41586-018-0338-1
container_title Nature
container_volume 560
container_issue 7716
container_start_page 49
op_container_end_page 54
_version_ 1766163903956385792