Evidence for ocean acidification in the Great Barrier Reef of Australia

Geochemical records preserved in the long-lived carbonate skeleton of corals provide one of the few means to reconstruct changes in seawater pH since the commencement of the industrial era. This information is important in not only determining the response of the surface oceans to ocean acidificatio...

Full description

Bibliographic Details
Published in:Geochimica et Cosmochimica Acta
Main Authors: Wei, Gangjian, McCulloch, Malcolm T., Mortimer, Graham, Deng, Wengfeng, Xie, Luhua
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier BV 2009
Subjects:
Online Access:https://espace.library.uq.edu.au/view/UQ:696543
id ftunivqespace:oai:espace.library.uq.edu.au:UQ:696543
record_format openpolar
spelling ftunivqespace:oai:espace.library.uq.edu.au:UQ:696543 2023-05-15T17:50:11+02:00 Evidence for ocean acidification in the Great Barrier Reef of Australia Wei, Gangjian McCulloch, Malcolm T. Mortimer, Graham Deng, Wengfeng Xie, Luhua 2009-04-01 https://espace.library.uq.edu.au/view/UQ:696543 eng eng Elsevier BV doi:10.1016/j.gca.2009.02.009 issn:0016-7037 orcid:0000-0002-1722-8031 Geochemistry and Petrology 1906 Geochemistry and Petrology Journal Article 2009 ftunivqespace https://doi.org/10.1016/j.gca.2009.02.009 2020-12-08T02:29:13Z Geochemical records preserved in the long-lived carbonate skeleton of corals provide one of the few means to reconstruct changes in seawater pH since the commencement of the industrial era. This information is important in not only determining the response of the surface oceans to ocean acidification from enhanced uptake of CO, but also to better understand the effects of ocean acidification on carbonate secreting organisms such as corals, whose ability to calcify is highly pH dependent. Here we report an ∼200 year δB isotopic record, extracted from a long-lived Porites coral from the central Great Barrier Reef of Australia. This record covering the period from 1800 to 2004 was sampled at yearly increments from 1940 to the present and 5-year increments prior to 1940. The δB isotopic compositions reflect variations in seawater pH, and the δC changes in the carbon composition of surface water due to fossil fuel burning over this period. In addition complementary Ba/Ca, δO and Mg/Ca data was obtained providing proxies for terrestrial runoff, salinity and temperature changes over the past 200 years in this region. Positive thermal ionization mass spectrometry (PTIMS) method was utilized in order to enable the highest precision and most accurate measurements of δB values. The internal precision and reproducibility for δB of our measurements are better than ±0.2‰ (2σ), which translates to a precision of better than ±0.02 pH units. Our results indicate that the long-term pre-industrial variation of seawater pH in this region is partially related to the decadal-interdecadal variability of atmospheric and oceanic anomalies in the Pacific. In the periods around 1940 and 1998 there are also rapid oscillations in δB compositions equivalent changes in pH of almost 0.5 U. The 1998 oscillation is co-incident with a major coral bleaching event indicating the sensitivity of skeletal δB compositions to loss of zooxanthellate symbionts. Importantly, from the 1940s to the present-day, there is a general overall trend of ocean acidification with pH decreasing by about 0.2-0.3 U, the range being dependent on the value assumed for the fractionation factor α of the boric acid and borate species in seawater. Correlations of δB with δC during this interval indicate that the increasing trend towards ocean acidification over the past 60 years in this region is the result of enhanced dissolution of CO in surface waters from the rapidly increasing levels of atmospheric CO, mainly from fossil fuel burning. This suggests that the increased levels of anthropogenic CO in atmosphere has already caused a significant trend towards acidification in the oceans during the past decades. Observations of surprisingly large decreases in pH across important carbonate producing regions, such as the Great Barrier Reef of Australia, raise serious concerns about the impact of Greenhouse gas emissions on coral calcification. Article in Journal/Newspaper Ocean acidification The University of Queensland: UQ eSpace Pacific Geochimica et Cosmochimica Acta 73 8 2332 2346
institution Open Polar
collection The University of Queensland: UQ eSpace
op_collection_id ftunivqespace
language English
topic Geochemistry and Petrology
1906 Geochemistry and Petrology
spellingShingle Geochemistry and Petrology
1906 Geochemistry and Petrology
Wei, Gangjian
McCulloch, Malcolm T.
Mortimer, Graham
Deng, Wengfeng
Xie, Luhua
Evidence for ocean acidification in the Great Barrier Reef of Australia
topic_facet Geochemistry and Petrology
1906 Geochemistry and Petrology
description Geochemical records preserved in the long-lived carbonate skeleton of corals provide one of the few means to reconstruct changes in seawater pH since the commencement of the industrial era. This information is important in not only determining the response of the surface oceans to ocean acidification from enhanced uptake of CO, but also to better understand the effects of ocean acidification on carbonate secreting organisms such as corals, whose ability to calcify is highly pH dependent. Here we report an ∼200 year δB isotopic record, extracted from a long-lived Porites coral from the central Great Barrier Reef of Australia. This record covering the period from 1800 to 2004 was sampled at yearly increments from 1940 to the present and 5-year increments prior to 1940. The δB isotopic compositions reflect variations in seawater pH, and the δC changes in the carbon composition of surface water due to fossil fuel burning over this period. In addition complementary Ba/Ca, δO and Mg/Ca data was obtained providing proxies for terrestrial runoff, salinity and temperature changes over the past 200 years in this region. Positive thermal ionization mass spectrometry (PTIMS) method was utilized in order to enable the highest precision and most accurate measurements of δB values. The internal precision and reproducibility for δB of our measurements are better than ±0.2‰ (2σ), which translates to a precision of better than ±0.02 pH units. Our results indicate that the long-term pre-industrial variation of seawater pH in this region is partially related to the decadal-interdecadal variability of atmospheric and oceanic anomalies in the Pacific. In the periods around 1940 and 1998 there are also rapid oscillations in δB compositions equivalent changes in pH of almost 0.5 U. The 1998 oscillation is co-incident with a major coral bleaching event indicating the sensitivity of skeletal δB compositions to loss of zooxanthellate symbionts. Importantly, from the 1940s to the present-day, there is a general overall trend of ocean acidification with pH decreasing by about 0.2-0.3 U, the range being dependent on the value assumed for the fractionation factor α of the boric acid and borate species in seawater. Correlations of δB with δC during this interval indicate that the increasing trend towards ocean acidification over the past 60 years in this region is the result of enhanced dissolution of CO in surface waters from the rapidly increasing levels of atmospheric CO, mainly from fossil fuel burning. This suggests that the increased levels of anthropogenic CO in atmosphere has already caused a significant trend towards acidification in the oceans during the past decades. Observations of surprisingly large decreases in pH across important carbonate producing regions, such as the Great Barrier Reef of Australia, raise serious concerns about the impact of Greenhouse gas emissions on coral calcification.
format Article in Journal/Newspaper
author Wei, Gangjian
McCulloch, Malcolm T.
Mortimer, Graham
Deng, Wengfeng
Xie, Luhua
author_facet Wei, Gangjian
McCulloch, Malcolm T.
Mortimer, Graham
Deng, Wengfeng
Xie, Luhua
author_sort Wei, Gangjian
title Evidence for ocean acidification in the Great Barrier Reef of Australia
title_short Evidence for ocean acidification in the Great Barrier Reef of Australia
title_full Evidence for ocean acidification in the Great Barrier Reef of Australia
title_fullStr Evidence for ocean acidification in the Great Barrier Reef of Australia
title_full_unstemmed Evidence for ocean acidification in the Great Barrier Reef of Australia
title_sort evidence for ocean acidification in the great barrier reef of australia
publisher Elsevier BV
publishDate 2009
url https://espace.library.uq.edu.au/view/UQ:696543
geographic Pacific
geographic_facet Pacific
genre Ocean acidification
genre_facet Ocean acidification
op_relation doi:10.1016/j.gca.2009.02.009
issn:0016-7037
orcid:0000-0002-1722-8031
op_doi https://doi.org/10.1016/j.gca.2009.02.009
container_title Geochimica et Cosmochimica Acta
container_volume 73
container_issue 8
container_start_page 2332
op_container_end_page 2346
_version_ 1766156823299096576