Modelling the use of gene expression profiles with selective breeding for improved disease resistance in Atlantic salmon (Salmo salar)

The use of gene expression profiling with selective breeding for improved disease resistance in Atlantic salmon was evaluated using a computer simulation model. Disease resistance was improved by selection for survival after challenge test, or by selection for predicted survival from analysis of the...

Full description

Bibliographic Details
Published in:Aquaculture
Main Authors: Robinson, Nick, Hayes, Ben
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier BV 2008
Subjects:
Online Access:https://espace.library.uq.edu.au/view/UQ:398805
id ftunivqespace:oai:espace.library.uq.edu.au:UQ:398805
record_format openpolar
spelling ftunivqespace:oai:espace.library.uq.edu.au:UQ:398805 2023-05-15T15:32:16+02:00 Modelling the use of gene expression profiles with selective breeding for improved disease resistance in Atlantic salmon (Salmo salar) Robinson, Nick Hayes, Ben 2008-12-07 https://espace.library.uq.edu.au/view/UQ:398805 eng eng Elsevier BV doi:10.1016/j.aquaculture.2008.08.016 issn:0044-8486 issn:1873-5622 orcid:0000-0002-5606-3970 NE/E015212/10 BB/D015391/1 Benefit-cost Gene expression Genetic response Selective breeding Simulation model 1104 Aquatic Science Journal Article 2008 ftunivqespace https://doi.org/10.1016/j.aquaculture.2008.08.016 2020-08-05T20:43:23Z The use of gene expression profiling with selective breeding for improved disease resistance in Atlantic salmon was evaluated using a computer simulation model. Disease resistance was improved by selection for survival after challenge test, or by selection for predicted survival from analysis of the gene expression response of cells challenged in-vitro to disease, or a combination of both traits. As the correlation between gene expression level and survival is unknown and will be dependant on the prediction equation used, we modelled different levels of genetic and phenotypic correlation (r and r) between the two traits. Genetic response was evaluated under four different selection criteria: family breeding value from disease challenge tests (CRIT1), predictor of individual challenge test phenotype using gene expression profiling (CRIT2), a combination of criteria 1 and 2 (CRIT3), and, direct selection of disease challenge test survivors (CRIT4). Economic evaluation was performed using estimates and records from the industry, and accounting for the costs of gene expression profiling, under an opportunity cost model. The predictive ability and selection accuracy improved under CRIT2 and CRIT3 as r and r was increased. The best genetic response was achieved by using disease challenge tests to select the best families in combination with gene expression tests to select the best individuals within families (CRIT3). Disease resistance was doubled after 6-7 generations of selection, and varying the phenotypic and genetic correlation had a relatively small effect on the overall genetic response after 10 generations. Benefit-cost was positive under all scenarios. With 10 generations of selection under CRIT3 the model predicted a benefit-cost ratio of more than 17:1, total added value per kg of fish of 0.29 Euro/kg and a nominal economic effect on operating income of over 175 million Euros. CRIT3 was almost as profitable an option as CRIT1, providing the cost of gene expression testing was less than Euro 280/individual and r was greater than 0.3, was more profitable than CRIT2 under all scenarios and resulted in greater total added value and higher nominal effect on operating income than all other selection criteria. Article in Journal/Newspaper Atlantic salmon Salmo salar The University of Queensland: UQ eSpace Aquaculture 285 1-4 38 46
institution Open Polar
collection The University of Queensland: UQ eSpace
op_collection_id ftunivqespace
language English
topic Benefit-cost
Gene expression
Genetic response
Selective breeding
Simulation model
1104 Aquatic Science
spellingShingle Benefit-cost
Gene expression
Genetic response
Selective breeding
Simulation model
1104 Aquatic Science
Robinson, Nick
Hayes, Ben
Modelling the use of gene expression profiles with selective breeding for improved disease resistance in Atlantic salmon (Salmo salar)
topic_facet Benefit-cost
Gene expression
Genetic response
Selective breeding
Simulation model
1104 Aquatic Science
description The use of gene expression profiling with selective breeding for improved disease resistance in Atlantic salmon was evaluated using a computer simulation model. Disease resistance was improved by selection for survival after challenge test, or by selection for predicted survival from analysis of the gene expression response of cells challenged in-vitro to disease, or a combination of both traits. As the correlation between gene expression level and survival is unknown and will be dependant on the prediction equation used, we modelled different levels of genetic and phenotypic correlation (r and r) between the two traits. Genetic response was evaluated under four different selection criteria: family breeding value from disease challenge tests (CRIT1), predictor of individual challenge test phenotype using gene expression profiling (CRIT2), a combination of criteria 1 and 2 (CRIT3), and, direct selection of disease challenge test survivors (CRIT4). Economic evaluation was performed using estimates and records from the industry, and accounting for the costs of gene expression profiling, under an opportunity cost model. The predictive ability and selection accuracy improved under CRIT2 and CRIT3 as r and r was increased. The best genetic response was achieved by using disease challenge tests to select the best families in combination with gene expression tests to select the best individuals within families (CRIT3). Disease resistance was doubled after 6-7 generations of selection, and varying the phenotypic and genetic correlation had a relatively small effect on the overall genetic response after 10 generations. Benefit-cost was positive under all scenarios. With 10 generations of selection under CRIT3 the model predicted a benefit-cost ratio of more than 17:1, total added value per kg of fish of 0.29 Euro/kg and a nominal economic effect on operating income of over 175 million Euros. CRIT3 was almost as profitable an option as CRIT1, providing the cost of gene expression testing was less than Euro 280/individual and r was greater than 0.3, was more profitable than CRIT2 under all scenarios and resulted in greater total added value and higher nominal effect on operating income than all other selection criteria.
format Article in Journal/Newspaper
author Robinson, Nick
Hayes, Ben
author_facet Robinson, Nick
Hayes, Ben
author_sort Robinson, Nick
title Modelling the use of gene expression profiles with selective breeding for improved disease resistance in Atlantic salmon (Salmo salar)
title_short Modelling the use of gene expression profiles with selective breeding for improved disease resistance in Atlantic salmon (Salmo salar)
title_full Modelling the use of gene expression profiles with selective breeding for improved disease resistance in Atlantic salmon (Salmo salar)
title_fullStr Modelling the use of gene expression profiles with selective breeding for improved disease resistance in Atlantic salmon (Salmo salar)
title_full_unstemmed Modelling the use of gene expression profiles with selective breeding for improved disease resistance in Atlantic salmon (Salmo salar)
title_sort modelling the use of gene expression profiles with selective breeding for improved disease resistance in atlantic salmon (salmo salar)
publisher Elsevier BV
publishDate 2008
url https://espace.library.uq.edu.au/view/UQ:398805
genre Atlantic salmon
Salmo salar
genre_facet Atlantic salmon
Salmo salar
op_relation doi:10.1016/j.aquaculture.2008.08.016
issn:0044-8486
issn:1873-5622
orcid:0000-0002-5606-3970
NE/E015212/10
BB/D015391/1
op_doi https://doi.org/10.1016/j.aquaculture.2008.08.016
container_title Aquaculture
container_volume 285
container_issue 1-4
container_start_page 38
op_container_end_page 46
_version_ 1766362774916562944