The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity

The cyclotides are currently the largest known family of head-to-tail cyclic proteins. The complex structure of these small plant proteins, which consist of approximately 30 amino acid residues, contains both a circular peptide backbone and a cystine knot, the combination of which produces the cycli...

Full description

Bibliographic Details
Published in:Phytochemistry
Main Authors: Herrman, Anders, Burman, Robert, Mylne, Joshua S., Karlsson, Gustav, Gullbo, Joachim, Craik, David J., Clark, Richard J., Goransson, Ulf
Other Authors: G. P. Bolwell
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2008
Subjects:
C1
Online Access:https://espace.library.uq.edu.au/view/UQ:175829
Description
Summary:The cyclotides are currently the largest known family of head-to-tail cyclic proteins. The complex structure of these small plant proteins, which consist of approximately 30 amino acid residues, contains both a circular peptide backbone and a cystine knot, the combination of which produces the cyclic cystine knot motif. To date, cyclotides have been found in plants from the Rubiaceae, Violaceace and Cucurbitaceae families, and are believed to be part of the host defence system. In addition to their insecticidal effect, cyclotides have also been shown to be cytotoxic, anti-HIV, antimicrobial and haemolytic agents. In this study, we show that the alpine violet Viola biflora (Violaceae) is a rich source of cyclotides. The sequences of 11 cyclotides, vibi A-K, were determined by isolation and MS/MS sequencing of proteins and screening of a cDNA library of V. biflora in parallel. For the cDNA screening, a degenerate primer against a conserved (AAFALPA) motif in the cyclotide precursor ER signal sequence yielded a series of predicted cyclotide sequences that were correlated to those of the isolated proteins. There was an apparent discrepancy between the results of the two strategies as only one of the isolated proteins could be identified as a cDNA clone. Finally, to correlate amino acid sequence to cytotoxic potency, vibi D, E, G and H were analysed using a fluorometric microculture cytotoxicity assay using a lymphoma cell line. The IC50-values of the bracelet cyclotides vibi E, G and H ranged between 0.96 and 5.0 μM while the Möbius cyclotide vibi D was not cytotoxic at 30 μM.