Mapování vegetace krkonošské tundry z multitemporálních LiDARových dat

Práce se zabývá parametry vertikální struktury vegetace odvozenými z UAV LiDARových dat a jejich využitím k multitemporální klasifikaci vybraných druhů arkto-alpinské tundry Krkonoš. Na základě rešerše literatury se zaměřením na nízké a keřovité porosty jsou vytipovány strukturní parametry. Jejich v...

Full description

Bibliographic Details
Main Author: Šrollerů, Alex
Other Authors: Potůčková, Markéta, Lysák, Jakub
Format: Thesis
Language:Czech
Published: Univerzita Karlova, Přírodovědecká fakulta 2022
Subjects:
Online Access:https://hdl.handle.net/20.500.11956/171851
Description
Summary:Práce se zabývá parametry vertikální struktury vegetace odvozenými z UAV LiDARových dat a jejich využitím k multitemporální klasifikaci vybraných druhů arkto-alpinské tundry Krkonoš. Na základě rešerše literatury se zaměřením na nízké a keřovité porosty jsou vytipovány strukturní parametry. Jejich vhodnost k rozlišení tundrovité vegetace je hodnocena algoritmem Random Forest a metodou určení důležitosti prediktorů pomocí permutace out-of bag pozorování, vynecháním prediktoru a individuální výkonností prediktoru. Následně je provedena fúze s multispektrálními daty a určen vliv LiDAR odvozených strukturních parametrů na zpřesnění výsledků klasifikace. Zkoumány jsou také strukturní parametry vegetace odvozené z digitálního modelu povrchu získaného obrazovou korelací multispektrálních dat. Pro odlišení vegetačních tříd byl jako nejvhodnější určen parametr maximální výšky, následován minimální výškou, relativním poměrem povrchu vegetace a koeficientem variace, které dosáhly celkové klasifikační přesnosti 67,3 % pro Bílou louku a 62,3 % pro Úpské rašeliniště. Fúze s multispektrálními daty vedla k zpřesnění klasifikace do 2 %. V případě struktury vegetace odvozené z digitálního modelu povrchu bylo dosaženo stejného výsledku s výjimkou vyšších porostů. LiDARová data se neukázala jako přínosná k odlišení. The thesis focuses on metrics of vertical structure of vegetation derived from UAV LiDAR data and their use for multitemporal classification of selected species of arctic-alpine tundra in the Krkonoše Mountains. The metrics are selected based on a literature search focusing on low and shrubby stands. Random Forest algorithm and permutation feature importance, drop column importance and individual predictor performance is used to determine the suitability of metrics for distinguishing tundra vegetation. Subsequently, a fusion with multispectral data is performed and influence of the LiDAR derived variables on the refinement of classification results is determined. The use of metrics derived from a digital surface model ...