Identification of cyanobacterial strains with potential for the treatment of obesity-related co-morbidities by bioactivity, toxicity evaluation and metabolite profiling

Obesity is a complex disease resulting in several metabolic co-morbidities and is increasing at epidemic rates. The marine environment is an interesting resource of novel compounds and in particular cyanobacteria are well known for their capacity to produce novel secondary metabolites. In this work,...

Full description

Bibliographic Details
Published in:Marine Drugs
Main Authors: Costa, M., Rosa, F., Ribeiro, T., Hernandez-Bautista, R., Bonaldo, M., Silva, N.G., Eiríksson, F., Thorsteinsdóttir, M., Ussar, S., Urbatzka, R.
Other Authors: Centro Interdisciplinar de Investigação Marinha e Ambiental
Format: Article in Journal/Newspaper
Language:English
Published: MDPI 2019
Subjects:
Online Access:https://hdl.handle.net/10216/130452
https://doi.org/10.3390/md17050280
Description
Summary:Obesity is a complex disease resulting in several metabolic co-morbidities and is increasing at epidemic rates. The marine environment is an interesting resource of novel compounds and in particular cyanobacteria are well known for their capacity to produce novel secondary metabolites. In this work, we explored the potential of cyanobacteria for the production of compounds with relevant activities towards metabolic diseases using a blend of target-based, phenotypic and zebrafish assays as whole small animal models. A total of 46 cyanobacterial strains were grown and biomass fractionated, yielding in total 263 fractions. Bioactivities related to metabolic function were tested in different in vitro and in vivo models. Studying adipogenic and thermogenic gene expression in brown adipocytes, lipid metabolism and glucose uptake in hepatocytes, as well as lipid metabolism in zebrafish larvae, we identified 66 (25%) active fractions. This together with metabolite profiling and the evaluation of toxicity allowed the identification of 18 (7%) fractions with promising bioactivity towards different aspects of metabolic disease. Among those, we identified several known compounds, such as eryloside T, leptosin F, pheophorbide A, phaeophytin A, chlorophyll A, present as minor peaks. Those compounds were previously not described to have bioactivities in metabolic regulation, and both known or unknown compounds could be responsible for such effects. In summary, we find that cyanobacteria hold a huge repertoire of molecules with specific bioactivities towards metabolic diseases, which needs to be explored in the future. This work was financed by national funds through FCT (Portugal), BMBF (Germany), Rannis (Iceland) and Formas (Sweden), within the framework of the European ERA-NET Marine Biotechnology project “CYANOBESITY - Cyanobacteria as a source of bioactive compounds with effects on obesity and obesity-related co-morbidities”. The research was additionally supported by the FCT strategic fund UID/Multi/04423/2019. Ralph ...