Multi-proxy analysis of Late Quaternary ODYSSEA Contourite Depositional System (Ross Sea, Antarctica) and the depositional record of contour current and cold, dense waters

The Ross Ice Shelf is the Antarctic region that over the last deglaciation experienced the greatest change in areal ice cover. Today, cold, dense and saline water masses (brines) produced in the Ross Sea polynya, flow from the shelf to the deep ocean providing a significant contribution to the prope...

Full description

Bibliographic Details
Main Authors: Rebesco M., Lucchi R. G., Caburlotto A., Miserocchi S., Langone L., Liu Y., Morigi C., Macrì P., Winkler A., DiRoberto A., DelCarlo P., Colizza E., Persico D., Villa G., Conte R., Douss N., Neofitu R., Mark C.
Other Authors: Rebesco, M., Lucchi, R. G., Caburlotto, A., Miserocchi, S., Langone, L., Liu, Y., Morigi, C., Macrì, P., Winkler, A., Diroberto, A., Delcarlo, P., Colizza, E., Persico, D., Villa, G., Conte, R., Douss, N., Neofitu, R., Mark, C.
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/11568/1039540
https://doi.org/10.5194/egusphere-egu2020-12940
https://meetingorganizer.copernicus.org/EGU2020/EGU2020-12940.html
id ftunivpisairis:oai:arpi.unipi.it:11568/1039540
record_format openpolar
spelling ftunivpisairis:oai:arpi.unipi.it:11568/1039540 2024-04-14T08:03:55+00:00 Multi-proxy analysis of Late Quaternary ODYSSEA Contourite Depositional System (Ross Sea, Antarctica) and the depositional record of contour current and cold, dense waters Rebesco M. Lucchi R. G. Caburlotto A. Miserocchi S. Langone L. Liu Y. Morigi C. Macrì P. Winkler A. DiRoberto A. DelCarlo P. Colizza E. Persico D. Villa G. Conte R. Douss N. Neofitu R. Mark C. Rebesco, M. Lucchi, R. G. Caburlotto, A. Miserocchi, S. Langone, L. Liu, Y. Morigi, C. Macrì, P. Winkler, A. Diroberto, A. Delcarlo, P. Colizza, E. Persico, D. Villa, G. Conte, R. Douss, N. Neofitu, R. Mark, C. 2020 ELETTRONICO https://hdl.handle.net/11568/1039540 https://doi.org/10.5194/egusphere-egu2020-12940 https://meetingorganizer.copernicus.org/EGU2020/EGU2020-12940.html eng eng volume:EGU2020-12940 numberofpages:2 journal:GEOPHYSICAL RESEARCH ABSTRACTS https://hdl.handle.net/11568/1039540 doi:10.5194/egusphere-egu2020-12940 https://meetingorganizer.copernicus.org/EGU2020/EGU2020-12940.html Multiproxies Contourite Depositional System Ross Sea Antarctica info:eu-repo/semantics/article 2020 ftunivpisairis https://doi.org/10.5194/egusphere-egu2020-12940 2024-03-21T19:13:58Z The Ross Ice Shelf is the Antarctic region that over the last deglaciation experienced the greatest change in areal ice cover. Today, cold, dense and saline water masses (brines) produced in the Ross Sea polynya, flow from the shelf to the deep ocean providing a significant contribution to the propelling of the global ocean circulation regulating the climate. In particular, the Hillary Canyon in the Eastern Ross Sea is the main conduit through which brines descend the slope to reach the deeper ocean and is thus one of the greatest regions of cold, dense water export in the world. A Contourite Depositional System (the ODYSSEA CDS) on the western flank of the Hillary Canyon is inferred to have been generated through several hundred-thousand years by along-slope, contour currents that transported and accumulated the sediments brought down the Hillary Canyon by means of brines. A multi-proxy investigation was conducted on the shallowest part of the ODYSSEA CDS depositional sequences, which we expect to contain i) the record of the brine formation, ii) the indication on contour current strength through time, and iii) their interplay and modulation associated to climate change. Six gravity cores, collected in both the proximal and distal area of the ODYSSEA CDS, were studied through multi-proxy analyses including sediment physical properties (texture, structures, water content, wet bulk density), compositional characteristics (XRF, geochemistry and detrital apatite, zircon, and rutile U-Pb on ice-rafted debris) (Lucchi et al., 2019; Neofitu et al., 2020) and microfossil content (planktonic and benthic foraminifera, calcareous nannofossils and diatoms). An age model has been reconstructed combining palaeomagnetic record, biostratigraphic content, tephrochronology and AMS radiocarbon dating on planktonic foraminifera tests. Inferred variations in dense water formation, contour current strength and ice sheet dynamics are discussed in the light of our data interpretation. Article in Journal/Newspaper Antarc* Antarctic Antarctica Ice Sheet Ice Shelf Planktonic foraminifera Ross Ice Shelf Ross Sea ARPI - Archivio della Ricerca dell'Università di Pisa Antarctic Hillary Canyon ENVELOPE(-175.762,-175.762,-74.544,-74.544) Ross Ice Shelf Ross Sea The Antarctic
institution Open Polar
collection ARPI - Archivio della Ricerca dell'Università di Pisa
op_collection_id ftunivpisairis
language English
topic Multiproxies
Contourite Depositional System
Ross Sea
Antarctica
spellingShingle Multiproxies
Contourite Depositional System
Ross Sea
Antarctica
Rebesco M.
Lucchi R. G.
Caburlotto A.
Miserocchi S.
Langone L.
Liu Y.
Morigi C.
Macrì P.
Winkler A.
DiRoberto A.
DelCarlo P.
Colizza E.
Persico D.
Villa G.
Conte R.
Douss N.
Neofitu R.
Mark C.
Multi-proxy analysis of Late Quaternary ODYSSEA Contourite Depositional System (Ross Sea, Antarctica) and the depositional record of contour current and cold, dense waters
topic_facet Multiproxies
Contourite Depositional System
Ross Sea
Antarctica
description The Ross Ice Shelf is the Antarctic region that over the last deglaciation experienced the greatest change in areal ice cover. Today, cold, dense and saline water masses (brines) produced in the Ross Sea polynya, flow from the shelf to the deep ocean providing a significant contribution to the propelling of the global ocean circulation regulating the climate. In particular, the Hillary Canyon in the Eastern Ross Sea is the main conduit through which brines descend the slope to reach the deeper ocean and is thus one of the greatest regions of cold, dense water export in the world. A Contourite Depositional System (the ODYSSEA CDS) on the western flank of the Hillary Canyon is inferred to have been generated through several hundred-thousand years by along-slope, contour currents that transported and accumulated the sediments brought down the Hillary Canyon by means of brines. A multi-proxy investigation was conducted on the shallowest part of the ODYSSEA CDS depositional sequences, which we expect to contain i) the record of the brine formation, ii) the indication on contour current strength through time, and iii) their interplay and modulation associated to climate change. Six gravity cores, collected in both the proximal and distal area of the ODYSSEA CDS, were studied through multi-proxy analyses including sediment physical properties (texture, structures, water content, wet bulk density), compositional characteristics (XRF, geochemistry and detrital apatite, zircon, and rutile U-Pb on ice-rafted debris) (Lucchi et al., 2019; Neofitu et al., 2020) and microfossil content (planktonic and benthic foraminifera, calcareous nannofossils and diatoms). An age model has been reconstructed combining palaeomagnetic record, biostratigraphic content, tephrochronology and AMS radiocarbon dating on planktonic foraminifera tests. Inferred variations in dense water formation, contour current strength and ice sheet dynamics are discussed in the light of our data interpretation.
author2 Rebesco, M.
Lucchi, R. G.
Caburlotto, A.
Miserocchi, S.
Langone, L.
Liu, Y.
Morigi, C.
Macrì, P.
Winkler, A.
Diroberto, A.
Delcarlo, P.
Colizza, E.
Persico, D.
Villa, G.
Conte, R.
Douss, N.
Neofitu, R.
Mark, C.
format Article in Journal/Newspaper
author Rebesco M.
Lucchi R. G.
Caburlotto A.
Miserocchi S.
Langone L.
Liu Y.
Morigi C.
Macrì P.
Winkler A.
DiRoberto A.
DelCarlo P.
Colizza E.
Persico D.
Villa G.
Conte R.
Douss N.
Neofitu R.
Mark C.
author_facet Rebesco M.
Lucchi R. G.
Caburlotto A.
Miserocchi S.
Langone L.
Liu Y.
Morigi C.
Macrì P.
Winkler A.
DiRoberto A.
DelCarlo P.
Colizza E.
Persico D.
Villa G.
Conte R.
Douss N.
Neofitu R.
Mark C.
author_sort Rebesco M.
title Multi-proxy analysis of Late Quaternary ODYSSEA Contourite Depositional System (Ross Sea, Antarctica) and the depositional record of contour current and cold, dense waters
title_short Multi-proxy analysis of Late Quaternary ODYSSEA Contourite Depositional System (Ross Sea, Antarctica) and the depositional record of contour current and cold, dense waters
title_full Multi-proxy analysis of Late Quaternary ODYSSEA Contourite Depositional System (Ross Sea, Antarctica) and the depositional record of contour current and cold, dense waters
title_fullStr Multi-proxy analysis of Late Quaternary ODYSSEA Contourite Depositional System (Ross Sea, Antarctica) and the depositional record of contour current and cold, dense waters
title_full_unstemmed Multi-proxy analysis of Late Quaternary ODYSSEA Contourite Depositional System (Ross Sea, Antarctica) and the depositional record of contour current and cold, dense waters
title_sort multi-proxy analysis of late quaternary odyssea contourite depositional system (ross sea, antarctica) and the depositional record of contour current and cold, dense waters
publishDate 2020
url https://hdl.handle.net/11568/1039540
https://doi.org/10.5194/egusphere-egu2020-12940
https://meetingorganizer.copernicus.org/EGU2020/EGU2020-12940.html
long_lat ENVELOPE(-175.762,-175.762,-74.544,-74.544)
geographic Antarctic
Hillary Canyon
Ross Ice Shelf
Ross Sea
The Antarctic
geographic_facet Antarctic
Hillary Canyon
Ross Ice Shelf
Ross Sea
The Antarctic
genre Antarc*
Antarctic
Antarctica
Ice Sheet
Ice Shelf
Planktonic foraminifera
Ross Ice Shelf
Ross Sea
genre_facet Antarc*
Antarctic
Antarctica
Ice Sheet
Ice Shelf
Planktonic foraminifera
Ross Ice Shelf
Ross Sea
op_relation volume:EGU2020-12940
numberofpages:2
journal:GEOPHYSICAL RESEARCH ABSTRACTS
https://hdl.handle.net/11568/1039540
doi:10.5194/egusphere-egu2020-12940
https://meetingorganizer.copernicus.org/EGU2020/EGU2020-12940.html
op_doi https://doi.org/10.5194/egusphere-egu2020-12940
_version_ 1796300229816877056