Nanometre-scale infrared chemical imaging (AFM-IR) of organic matter in ultra-carbonaceous Antarctic micrometeorites (UCAMMS) and future analyses of Hayabusa 2 samples.

International audience Introduction: The chemical composition of organic matter (OM) in interplanetary samples (meteorites and micrometeorites) is suitably characterized by the distribution of the different chemical bonds using infrared (IR) vibrational spectroscopy (see e.g. [1]). Classical IR micr...

Full description

Bibliographic Details
Main Authors: Mathurin, J, Dartois, E, Engrand, C, Duprat, J, Deniset- Besseau, A, Dazzi, A, Kebukawa, Y, Noguchi, T, Troadec, David
Other Authors: Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Renatech Network, CMNF, ANR-18-CE31-0011,COMETOR,Origine de la poussière cométaire(2018)
Format: Conference Object
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-03052490
https://hal.science/hal-03052490/document
https://hal.science/hal-03052490/file/Mathurin_2020_AFMIR_UCAMMs_orga_HYB2-LPSC.pdf
id ftunivphautsdefr:oai:HAL:hal-03052490v1
record_format openpolar
institution Open Polar
collection Université Polytechnique Hauts-de-France: HAL
op_collection_id ftunivphautsdefr
language English
topic [PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]
spellingShingle [PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]
Mathurin, J
Dartois, E
Engrand, C
Duprat, J
Deniset- Besseau, A
Dazzi, A
Kebukawa, Y
Noguchi, T
Troadec, David
Nanometre-scale infrared chemical imaging (AFM-IR) of organic matter in ultra-carbonaceous Antarctic micrometeorites (UCAMMS) and future analyses of Hayabusa 2 samples.
topic_facet [PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]
description International audience Introduction: The chemical composition of organic matter (OM) in interplanetary samples (meteorites and micrometeorites) is suitably characterized by the distribution of the different chemical bonds using infrared (IR) vibrational spectroscopy (see e.g. [1]). Classical IR microscopy provides a global view of the dust grain chemical structure content but remains limited by the diffraction, with typical spot sizes sampling a few micrometers in the mid-IR range. This spatial resolution limitation is well above that of complementary techniques such as isotopic imaging with NanoSIMS or transmission electron or X-ray microscopy techniques. These techniques reveal mineralogical, chemical and isotopic heterogeneities at the sub-micron scale but do not give full access to the distribution of the various chemical bonds. The IR diffraction limitation can be circumvented by using AFM-IR microscopy. This technique opens a new window for studies of OM at ten to tens of nanometer scales and will be of importance for studies of the samples from carbonaceous asteroid Ryugu, returned by the Hayabusa 2 space probe in December 2020. AFM-IR is now a well-established microscopy technique in the vibrational field. It combines an atomic force microscope (AFM) and a tunable IR source to detect photo-thermal effect and access chemical information down to a nanoscale resolution [2]. This technique is now applied in a wide diversity of scientific fields [3], and was recently used to analyze extraterrestrial OM [4, 5]. We report here on recent results obtained on imaging two UltraCarbonaceous Antarctic MicroMeteorites (UCAMMs) using AFM-IR [5]. A small fraction of the Antarctic micrometeorites from the Concordia collection consists in UCAMMs, particles with extreme concentrations in OM, most of them exhibiting large deuterium excesses [6]. UCAMMs are also found in Japanese interplanetary dust collections [7-9]. These UCAMMs most likely originate from the surface of small icy bodies in the outer regions of the solar ...
author2 Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN)
Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)
Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN)
Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)
Renatech Network
CMNF
ANR-18-CE31-0011,COMETOR,Origine de la poussière cométaire(2018)
format Conference Object
author Mathurin, J
Dartois, E
Engrand, C
Duprat, J
Deniset- Besseau, A
Dazzi, A
Kebukawa, Y
Noguchi, T
Troadec, David
author_facet Mathurin, J
Dartois, E
Engrand, C
Duprat, J
Deniset- Besseau, A
Dazzi, A
Kebukawa, Y
Noguchi, T
Troadec, David
author_sort Mathurin, J
title Nanometre-scale infrared chemical imaging (AFM-IR) of organic matter in ultra-carbonaceous Antarctic micrometeorites (UCAMMS) and future analyses of Hayabusa 2 samples.
title_short Nanometre-scale infrared chemical imaging (AFM-IR) of organic matter in ultra-carbonaceous Antarctic micrometeorites (UCAMMS) and future analyses of Hayabusa 2 samples.
title_full Nanometre-scale infrared chemical imaging (AFM-IR) of organic matter in ultra-carbonaceous Antarctic micrometeorites (UCAMMS) and future analyses of Hayabusa 2 samples.
title_fullStr Nanometre-scale infrared chemical imaging (AFM-IR) of organic matter in ultra-carbonaceous Antarctic micrometeorites (UCAMMS) and future analyses of Hayabusa 2 samples.
title_full_unstemmed Nanometre-scale infrared chemical imaging (AFM-IR) of organic matter in ultra-carbonaceous Antarctic micrometeorites (UCAMMS) and future analyses of Hayabusa 2 samples.
title_sort nanometre-scale infrared chemical imaging (afm-ir) of organic matter in ultra-carbonaceous antarctic micrometeorites (ucamms) and future analyses of hayabusa 2 samples.
publisher HAL CCSD
publishDate 2020
url https://hal.science/hal-03052490
https://hal.science/hal-03052490/document
https://hal.science/hal-03052490/file/Mathurin_2020_AFMIR_UCAMMs_orga_HYB2-LPSC.pdf
op_coverage Houston, United States
long_lat ENVELOPE(44.033,44.033,-67.967,-67.967)
geographic Antarctic
Ryugu
The Antarctic
geographic_facet Antarctic
Ryugu
The Antarctic
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source Lunar and Planetary Science Conference
https://hal.science/hal-03052490
Lunar and Planetary Science Conference, Mar 2020, Houston, United States
op_relation hal-03052490
https://hal.science/hal-03052490
https://hal.science/hal-03052490/document
https://hal.science/hal-03052490/file/Mathurin_2020_AFMIR_UCAMMs_orga_HYB2-LPSC.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1798845514416914432
spelling ftunivphautsdefr:oai:HAL:hal-03052490v1 2024-05-12T07:53:55+00:00 Nanometre-scale infrared chemical imaging (AFM-IR) of organic matter in ultra-carbonaceous Antarctic micrometeorites (UCAMMS) and future analyses of Hayabusa 2 samples. Mathurin, J Dartois, E Engrand, C Duprat, J Deniset- Besseau, A Dazzi, A Kebukawa, Y Noguchi, T Troadec, David Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab) Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN) Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF) Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN) Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF) Renatech Network CMNF ANR-18-CE31-0011,COMETOR,Origine de la poussière cométaire(2018) Houston, United States 2020-03-18 https://hal.science/hal-03052490 https://hal.science/hal-03052490/document https://hal.science/hal-03052490/file/Mathurin_2020_AFMIR_UCAMMs_orga_HYB2-LPSC.pdf en eng HAL CCSD hal-03052490 https://hal.science/hal-03052490 https://hal.science/hal-03052490/document https://hal.science/hal-03052490/file/Mathurin_2020_AFMIR_UCAMMs_orga_HYB2-LPSC.pdf info:eu-repo/semantics/OpenAccess Lunar and Planetary Science Conference https://hal.science/hal-03052490 Lunar and Planetary Science Conference, Mar 2020, Houston, United States [PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] info:eu-repo/semantics/conferenceObject Conference papers 2020 ftunivphautsdefr 2024-04-12T00:11:18Z International audience Introduction: The chemical composition of organic matter (OM) in interplanetary samples (meteorites and micrometeorites) is suitably characterized by the distribution of the different chemical bonds using infrared (IR) vibrational spectroscopy (see e.g. [1]). Classical IR microscopy provides a global view of the dust grain chemical structure content but remains limited by the diffraction, with typical spot sizes sampling a few micrometers in the mid-IR range. This spatial resolution limitation is well above that of complementary techniques such as isotopic imaging with NanoSIMS or transmission electron or X-ray microscopy techniques. These techniques reveal mineralogical, chemical and isotopic heterogeneities at the sub-micron scale but do not give full access to the distribution of the various chemical bonds. The IR diffraction limitation can be circumvented by using AFM-IR microscopy. This technique opens a new window for studies of OM at ten to tens of nanometer scales and will be of importance for studies of the samples from carbonaceous asteroid Ryugu, returned by the Hayabusa 2 space probe in December 2020. AFM-IR is now a well-established microscopy technique in the vibrational field. It combines an atomic force microscope (AFM) and a tunable IR source to detect photo-thermal effect and access chemical information down to a nanoscale resolution [2]. This technique is now applied in a wide diversity of scientific fields [3], and was recently used to analyze extraterrestrial OM [4, 5]. We report here on recent results obtained on imaging two UltraCarbonaceous Antarctic MicroMeteorites (UCAMMs) using AFM-IR [5]. A small fraction of the Antarctic micrometeorites from the Concordia collection consists in UCAMMs, particles with extreme concentrations in OM, most of them exhibiting large deuterium excesses [6]. UCAMMs are also found in Japanese interplanetary dust collections [7-9]. These UCAMMs most likely originate from the surface of small icy bodies in the outer regions of the solar ... Conference Object Antarc* Antarctic Université Polytechnique Hauts-de-France: HAL Antarctic Ryugu ENVELOPE(44.033,44.033,-67.967,-67.967) The Antarctic