Updates on the Titan Cloud Monitoring Campaign: Large Storms and Future Forecasts
International audience We present the results of an ongoing cloud monitoring campaign that uses ground-based telescopes to search for clouds on Titan. This campaign, begun in 2013, upholds the legacy of the Cassini mission by continuing to monitor Titan's atmospheric activity - providing insigh...
Main Authors: | , , , , , , , , , , |
---|---|
Other Authors: | , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
2022
|
Subjects: | |
Online Access: | https://insu.hal.science/insu-03584474 |
id |
ftunivparis:oai:HAL:insu-03584474v1 |
---|---|
record_format |
openpolar |
spelling |
ftunivparis:oai:HAL:insu-03584474v1 2023-11-12T04:23:03+01:00 Updates on the Titan Cloud Monitoring Campaign: Large Storms and Future Forecasts Corlies, P. Hayes, A. Adamkovics, M. Rodriguez, S. Turtle, E. Rojo, P. Lora, J. Mitchell, J. Lunine, J. Soderblom, J. Soto, A. Institut de Physique du Globe de Paris (IPGP (UMR_7154)) Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) à renseigner, Unknown Region 2022-02-22 https://insu.hal.science/insu-03584474 en eng HAL CCSD insu-03584474 https://insu.hal.science/insu-03584474 BIBCODE: 2020DPS.5241106C AAS Division of Planetary Science meeting #52 https://insu.hal.science/insu-03584474 AAS Division of Planetary Science meeting #52, 0000, à renseigner, Unknown Region. p. 54-71 [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/conferenceObject Conference papers 2022 ftunivparis 2023-10-18T16:20:52Z International audience We present the results of an ongoing cloud monitoring campaign that uses ground-based telescopes to search for clouds on Titan. This campaign, begun in 2013, upholds the legacy of the Cassini mission by continuing to monitor Titan's atmospheric activity - providing insight into the seasonal distribution of Titan's clouds including their location, frequency, and duration. To provide context for this campaign, we will first summarize the results of previous ground-based campaigns and Cassini observations, providing a more complete picture of the seasonality of the observations and highlighting the differences in cloud frequency and characteristics that have been observed over the course of a Titan season. To date, this campaign has observed several, sometimes unexpected, phenomena of Titan's meteorology. First, is an extended period of minimal cloud activity (as also observed with Cassini [Turtle et al. 2018]) in the season after equinox, during which time clouds were expected to form at northern mid-latitudes, but were not observed. Following this period of lower-than-predicted activity, clouds were regularly observed at northern latitudes with Cassini (Turtle et al. 2018), with the first mid-latitude storms observable from the ground in May 2017 (Corlies et al. 2018). Since this time, regular cloud activity has been observed throughout this campaign, with storms ranging in latitudes from the equator to the northern pole. We will present a summary of these observations, highlighting two large multi-week storms, which were rarely seen during southern summer, and possibly suggests an intimate connection between the liquid reservoirs at Titan's North Pole and large-scale cloud activity. We will end with a discussion of how these observations compare to those made with both Cassini and past ground based campaigns, how they might help inform models of Titan's atmosphere (Lora et al. 2015, Newman et al. 2016), and discuss the upcoming steps to continue monitoring Titan's complex hydrologic ... Conference Object North Pole Université de Paris: Portail HAL North Pole |
institution |
Open Polar |
collection |
Université de Paris: Portail HAL |
op_collection_id |
ftunivparis |
language |
English |
topic |
[SDU]Sciences of the Universe [physics] |
spellingShingle |
[SDU]Sciences of the Universe [physics] Corlies, P. Hayes, A. Adamkovics, M. Rodriguez, S. Turtle, E. Rojo, P. Lora, J. Mitchell, J. Lunine, J. Soderblom, J. Soto, A. Updates on the Titan Cloud Monitoring Campaign: Large Storms and Future Forecasts |
topic_facet |
[SDU]Sciences of the Universe [physics] |
description |
International audience We present the results of an ongoing cloud monitoring campaign that uses ground-based telescopes to search for clouds on Titan. This campaign, begun in 2013, upholds the legacy of the Cassini mission by continuing to monitor Titan's atmospheric activity - providing insight into the seasonal distribution of Titan's clouds including their location, frequency, and duration. To provide context for this campaign, we will first summarize the results of previous ground-based campaigns and Cassini observations, providing a more complete picture of the seasonality of the observations and highlighting the differences in cloud frequency and characteristics that have been observed over the course of a Titan season. To date, this campaign has observed several, sometimes unexpected, phenomena of Titan's meteorology. First, is an extended period of minimal cloud activity (as also observed with Cassini [Turtle et al. 2018]) in the season after equinox, during which time clouds were expected to form at northern mid-latitudes, but were not observed. Following this period of lower-than-predicted activity, clouds were regularly observed at northern latitudes with Cassini (Turtle et al. 2018), with the first mid-latitude storms observable from the ground in May 2017 (Corlies et al. 2018). Since this time, regular cloud activity has been observed throughout this campaign, with storms ranging in latitudes from the equator to the northern pole. We will present a summary of these observations, highlighting two large multi-week storms, which were rarely seen during southern summer, and possibly suggests an intimate connection between the liquid reservoirs at Titan's North Pole and large-scale cloud activity. We will end with a discussion of how these observations compare to those made with both Cassini and past ground based campaigns, how they might help inform models of Titan's atmosphere (Lora et al. 2015, Newman et al. 2016), and discuss the upcoming steps to continue monitoring Titan's complex hydrologic ... |
author2 |
Institut de Physique du Globe de Paris (IPGP (UMR_7154)) Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) |
format |
Conference Object |
author |
Corlies, P. Hayes, A. Adamkovics, M. Rodriguez, S. Turtle, E. Rojo, P. Lora, J. Mitchell, J. Lunine, J. Soderblom, J. Soto, A. |
author_facet |
Corlies, P. Hayes, A. Adamkovics, M. Rodriguez, S. Turtle, E. Rojo, P. Lora, J. Mitchell, J. Lunine, J. Soderblom, J. Soto, A. |
author_sort |
Corlies, P. |
title |
Updates on the Titan Cloud Monitoring Campaign: Large Storms and Future Forecasts |
title_short |
Updates on the Titan Cloud Monitoring Campaign: Large Storms and Future Forecasts |
title_full |
Updates on the Titan Cloud Monitoring Campaign: Large Storms and Future Forecasts |
title_fullStr |
Updates on the Titan Cloud Monitoring Campaign: Large Storms and Future Forecasts |
title_full_unstemmed |
Updates on the Titan Cloud Monitoring Campaign: Large Storms and Future Forecasts |
title_sort |
updates on the titan cloud monitoring campaign: large storms and future forecasts |
publisher |
HAL CCSD |
publishDate |
2022 |
url |
https://insu.hal.science/insu-03584474 |
op_coverage |
à renseigner, Unknown Region |
geographic |
North Pole |
geographic_facet |
North Pole |
genre |
North Pole |
genre_facet |
North Pole |
op_source |
AAS Division of Planetary Science meeting #52 https://insu.hal.science/insu-03584474 AAS Division of Planetary Science meeting #52, 0000, à renseigner, Unknown Region. p. 54-71 |
op_relation |
insu-03584474 https://insu.hal.science/insu-03584474 BIBCODE: 2020DPS.5241106C |
_version_ |
1782337947366850560 |