id ftunivparis:oai:HAL:insu-03579371v1
record_format openpolar
spelling ftunivparis:oai:HAL:insu-03579371v1 2023-11-12T04:07:07+01:00 Global equivalent magnetization of the oceanic lithosphere Dyment, J. Choi, Y. Hamoudi, M. Lesur, V. Thébault, Erwan Institut de Physique du Globe de Paris (IPGP) Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS) Laboratoire de Planétologie et Géodynamique UMR 6112 (LPG) Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) 2015 https://insu.hal.science/insu-03579371 https://doi.org/10.1016/j.epsl.2015.08.002 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2015.08.002 insu-03579371 https://insu.hal.science/insu-03579371 BIBCODE: 2015E&PSL.430.54D doi:10.1016/j.epsl.2015.08.002 ISSN: 0012-821X Earth and Planetary Science Letters https://insu.hal.science/insu-03579371 Earth and Planetary Science Letters, 2015, 430, pp.54-65. ⟨10.1016/j.epsl.2015.08.002⟩ marine magnetic anomalies magnetization oceanic lithosphere [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/article Journal articles 2015 ftunivparis https://doi.org/10.1016/j.epsl.2015.08.002 2023-10-25T16:19:06Z International audience As a by-product of the construction of a new World Digital Magnetic Anomaly Map over oceanic areas, we use an original approach based on the global forward modeling of seafloor spreading magnetic anomalies and their comparison to the available marine magnetic data to derive the first map of the equivalent magnetization over the World's ocean. This map reveals consistent patterns related to the age of the oceanic lithosphere, the spreading rate at which it was formed, and the presence of mantle thermal anomalies which affects seafloor spreading and the resulting lithosphere. As for the age, the equivalent magnetization decreases significantly during the first 10-15 Myr after its formation, probably due to the alteration of crustal magnetic minerals under pervasive hydrothermal alteration, then increases regularly between 20 and 70 Ma, reflecting variations in the field strength or source effects such as the acquisition of a secondary magnetization. As for the spreading rate, the equivalent magnetization is twice as strong in areas formed at fast rate than in those formed at slow rate, with a threshold at ∼40 km/Myr, in agreement with an independent global analysis of the amplitude of Anomaly 25. This result, combined with those from the study of the anomalous skewness of marine magnetic anomalies, allows building a unified model for the magnetic structure of normal oceanic lithosphere as a function of spreading rate. Finally, specific areas affected by thermal mantle anomalies at the time of their formation exhibit peculiar equivalent magnetization signatures, such as the cold Australian-Antarctic Discordance, marked by a lower magnetization, and several hotspots, marked by a high magnetization. Article in Journal/Newspaper Antarc* Antarctic Université de Paris: Portail HAL Antarctic Australian-Antarctic Discordance ENVELOPE(124.000,124.000,-49.000,-49.000) Earth and Planetary Science Letters 430 54 65
institution Open Polar
collection Université de Paris: Portail HAL
op_collection_id ftunivparis
language English
topic marine magnetic anomalies
magnetization
oceanic lithosphere
[SDU]Sciences of the Universe [physics]
spellingShingle marine magnetic anomalies
magnetization
oceanic lithosphere
[SDU]Sciences of the Universe [physics]
Dyment, J.
Choi, Y.
Hamoudi, M.
Lesur, V.
Thébault, Erwan
Global equivalent magnetization of the oceanic lithosphere
topic_facet marine magnetic anomalies
magnetization
oceanic lithosphere
[SDU]Sciences of the Universe [physics]
description International audience As a by-product of the construction of a new World Digital Magnetic Anomaly Map over oceanic areas, we use an original approach based on the global forward modeling of seafloor spreading magnetic anomalies and their comparison to the available marine magnetic data to derive the first map of the equivalent magnetization over the World's ocean. This map reveals consistent patterns related to the age of the oceanic lithosphere, the spreading rate at which it was formed, and the presence of mantle thermal anomalies which affects seafloor spreading and the resulting lithosphere. As for the age, the equivalent magnetization decreases significantly during the first 10-15 Myr after its formation, probably due to the alteration of crustal magnetic minerals under pervasive hydrothermal alteration, then increases regularly between 20 and 70 Ma, reflecting variations in the field strength or source effects such as the acquisition of a secondary magnetization. As for the spreading rate, the equivalent magnetization is twice as strong in areas formed at fast rate than in those formed at slow rate, with a threshold at ∼40 km/Myr, in agreement with an independent global analysis of the amplitude of Anomaly 25. This result, combined with those from the study of the anomalous skewness of marine magnetic anomalies, allows building a unified model for the magnetic structure of normal oceanic lithosphere as a function of spreading rate. Finally, specific areas affected by thermal mantle anomalies at the time of their formation exhibit peculiar equivalent magnetization signatures, such as the cold Australian-Antarctic Discordance, marked by a lower magnetization, and several hotspots, marked by a high magnetization.
author2 Institut de Physique du Globe de Paris (IPGP)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Planétologie et Géodynamique UMR 6112 (LPG)
Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Dyment, J.
Choi, Y.
Hamoudi, M.
Lesur, V.
Thébault, Erwan
author_facet Dyment, J.
Choi, Y.
Hamoudi, M.
Lesur, V.
Thébault, Erwan
author_sort Dyment, J.
title Global equivalent magnetization of the oceanic lithosphere
title_short Global equivalent magnetization of the oceanic lithosphere
title_full Global equivalent magnetization of the oceanic lithosphere
title_fullStr Global equivalent magnetization of the oceanic lithosphere
title_full_unstemmed Global equivalent magnetization of the oceanic lithosphere
title_sort global equivalent magnetization of the oceanic lithosphere
publisher HAL CCSD
publishDate 2015
url https://insu.hal.science/insu-03579371
https://doi.org/10.1016/j.epsl.2015.08.002
long_lat ENVELOPE(124.000,124.000,-49.000,-49.000)
geographic Antarctic
Australian-Antarctic Discordance
geographic_facet Antarctic
Australian-Antarctic Discordance
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source ISSN: 0012-821X
Earth and Planetary Science Letters
https://insu.hal.science/insu-03579371
Earth and Planetary Science Letters, 2015, 430, pp.54-65. ⟨10.1016/j.epsl.2015.08.002⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2015.08.002
insu-03579371
https://insu.hal.science/insu-03579371
BIBCODE: 2015E&PSL.430.54D
doi:10.1016/j.epsl.2015.08.002
op_doi https://doi.org/10.1016/j.epsl.2015.08.002
container_title Earth and Planetary Science Letters
container_volume 430
container_start_page 54
op_container_end_page 65
_version_ 1782327935972147200