Rhea's subsurface probed by the Cassini radiometer: Insights into its thermal, structural, and compositional properties

International audience During its 13.5 years of operation around the Saturn system, the microwave radiometer incorporated in the Cassini RADAR observed Rhea at 2.2 cm during 9 flybys, with resolutions up to a tenth of Rhea's radius. We compare the antenna temperatures measured by this instrumen...

Full description

Bibliographic Details
Published in:Icarus
Main Authors: Bonnefoy, Léa, Le Gall, Alice, Lellouch, Emmanuel, Leyrat, Cedric, Janssen, M., Sultana, R.
Other Authors: PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )-Université Grenoble Alpes (UGA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://insu.hal.science/insu-02902236
https://insu.hal.science/insu-02902236/document
https://insu.hal.science/insu-02902236/file/Rhea_paper_final_postprint.pdf
https://doi.org/10.1016/j.icarus.2020.113947
id ftunivparis:oai:HAL:insu-02902236v1
record_format openpolar
institution Open Polar
collection Université de Paris: Portail HAL
op_collection_id ftunivparis
language English
topic [SDU]Sciences of the Universe [physics]
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
spellingShingle [SDU]Sciences of the Universe [physics]
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
Bonnefoy, Léa
Le Gall, Alice
Lellouch, Emmanuel
Leyrat, Cedric
Janssen, M.
Sultana, R.
Rhea's subsurface probed by the Cassini radiometer: Insights into its thermal, structural, and compositional properties
topic_facet [SDU]Sciences of the Universe [physics]
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
description International audience During its 13.5 years of operation around the Saturn system, the microwave radiometer incorporated in the Cassini RADAR observed Rhea at 2.2 cm during 9 flybys, with resolutions up to a tenth of Rhea's radius. We compare the antenna temperatures measured by this instrument to simulated data generated with the combination of thermal, radiative transfer, and emissivity models, in order to derive new constraints on the thermal, structural, and compositional properties of the near subsurface of different regions of Rhea. We find that the Cassini radiometer probes depths of 5 to 15 m on Rhea (that is 200–700 wavelengths), implying a weakly absorbing regolith and therefore little contamination by non-ice compounds. In the South polar region, local summer and fall observations constrains the maximum loss tangent to be 8.1 × 10−4, implying a contaminant volumetric fraction of <10% and a porosity >10% in the first ~10 m. The derived thermal inertias (>60 MKS) in the South pole are higher than the ones measured in the thermal infrared (1–46 MKS), consistent with increasing compaction with depth. Over all of Rhea, current models relating surface microwave emissivity and backscatter cannot explain both the emissivities and the high radar backscatter recorded by the Cassini Radar, suggesting the presence of especially efficient backscattering structures in the subsurface of Rhea. This interpretation is consistent with the very low derived dielectric constants (1.1–1.5), indicating that the subsurface structures are depolarizing. In particular, the ejecta blanket of the Inktomi crater has an emissivity about 20% lower than its surroundings and is very radar-bright: the impact that formed this young crater must have excavated fresh water ice from the subsurface, while also creating structures (such as cracks) reflecting centimetric wavelengths.
author2 PLANETO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Institut universitaire de France (IUF)
Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
Jet Propulsion Laboratory (JPL)
NASA-California Institute of Technology (CALTECH)
Institut de Planétologie et d'Astrophysique de Grenoble (IPAG)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )-Université Grenoble Alpes (UGA)
format Article in Journal/Newspaper
author Bonnefoy, Léa
Le Gall, Alice
Lellouch, Emmanuel
Leyrat, Cedric
Janssen, M.
Sultana, R.
author_facet Bonnefoy, Léa
Le Gall, Alice
Lellouch, Emmanuel
Leyrat, Cedric
Janssen, M.
Sultana, R.
author_sort Bonnefoy, Léa
title Rhea's subsurface probed by the Cassini radiometer: Insights into its thermal, structural, and compositional properties
title_short Rhea's subsurface probed by the Cassini radiometer: Insights into its thermal, structural, and compositional properties
title_full Rhea's subsurface probed by the Cassini radiometer: Insights into its thermal, structural, and compositional properties
title_fullStr Rhea's subsurface probed by the Cassini radiometer: Insights into its thermal, structural, and compositional properties
title_full_unstemmed Rhea's subsurface probed by the Cassini radiometer: Insights into its thermal, structural, and compositional properties
title_sort rhea's subsurface probed by the cassini radiometer: insights into its thermal, structural, and compositional properties
publisher HAL CCSD
publishDate 2020
url https://insu.hal.science/insu-02902236
https://insu.hal.science/insu-02902236/document
https://insu.hal.science/insu-02902236/file/Rhea_paper_final_postprint.pdf
https://doi.org/10.1016/j.icarus.2020.113947
genre South pole
genre_facet South pole
op_source ISSN: 0019-1035
EISSN: 1090-2643
Icarus
https://insu.hal.science/insu-02902236
Icarus, 2020, 352 (December), pp.113947. &#x27E8;10.1016/j.icarus.2020.113947&#x27E9;
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.icarus.2020.113947
insu-02902236
https://insu.hal.science/insu-02902236
https://insu.hal.science/insu-02902236/document
https://insu.hal.science/insu-02902236/file/Rhea_paper_final_postprint.pdf
BIBCODE: 2020Icar.35213947B
doi:10.1016/j.icarus.2020.113947
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1016/j.icarus.2020.113947
container_title Icarus
container_volume 352
container_start_page 113947
_version_ 1810480636612313088
spelling ftunivparis:oai:HAL:insu-02902236v1 2024-09-15T18:36:54+00:00 Rhea's subsurface probed by the Cassini radiometer: Insights into its thermal, structural, and compositional properties Bonnefoy, Léa Le Gall, Alice Lellouch, Emmanuel Leyrat, Cedric Janssen, M. Sultana, R. PLANETO - LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Institut universitaire de France (IUF) Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.) Jet Propulsion Laboratory (JPL) NASA-California Institute of Technology (CALTECH) Institut de Planétologie et d'Astrophysique de Grenoble (IPAG) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )-Université Grenoble Alpes (UGA) 2020-07 https://insu.hal.science/insu-02902236 https://insu.hal.science/insu-02902236/document https://insu.hal.science/insu-02902236/file/Rhea_paper_final_postprint.pdf https://doi.org/10.1016/j.icarus.2020.113947 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.icarus.2020.113947 insu-02902236 https://insu.hal.science/insu-02902236 https://insu.hal.science/insu-02902236/document https://insu.hal.science/insu-02902236/file/Rhea_paper_final_postprint.pdf BIBCODE: 2020Icar.35213947B doi:10.1016/j.icarus.2020.113947 info:eu-repo/semantics/OpenAccess ISSN: 0019-1035 EISSN: 1090-2643 Icarus https://insu.hal.science/insu-02902236 Icarus, 2020, 352 (December), pp.113947. &#x27E8;10.1016/j.icarus.2020.113947&#x27E9; [SDU]Sciences of the Universe [physics] [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] info:eu-repo/semantics/article Journal articles 2020 ftunivparis https://doi.org/10.1016/j.icarus.2020.113947 2024-07-04T23:36:27Z International audience During its 13.5 years of operation around the Saturn system, the microwave radiometer incorporated in the Cassini RADAR observed Rhea at 2.2 cm during 9 flybys, with resolutions up to a tenth of Rhea's radius. We compare the antenna temperatures measured by this instrument to simulated data generated with the combination of thermal, radiative transfer, and emissivity models, in order to derive new constraints on the thermal, structural, and compositional properties of the near subsurface of different regions of Rhea. We find that the Cassini radiometer probes depths of 5 to 15 m on Rhea (that is 200–700 wavelengths), implying a weakly absorbing regolith and therefore little contamination by non-ice compounds. In the South polar region, local summer and fall observations constrains the maximum loss tangent to be 8.1 × 10−4, implying a contaminant volumetric fraction of <10% and a porosity >10% in the first ~10 m. The derived thermal inertias (>60 MKS) in the South pole are higher than the ones measured in the thermal infrared (1–46 MKS), consistent with increasing compaction with depth. Over all of Rhea, current models relating surface microwave emissivity and backscatter cannot explain both the emissivities and the high radar backscatter recorded by the Cassini Radar, suggesting the presence of especially efficient backscattering structures in the subsurface of Rhea. This interpretation is consistent with the very low derived dielectric constants (1.1–1.5), indicating that the subsurface structures are depolarizing. In particular, the ejecta blanket of the Inktomi crater has an emissivity about 20% lower than its surroundings and is very radar-bright: the impact that formed this young crater must have excavated fresh water ice from the subsurface, while also creating structures (such as cracks) reflecting centimetric wavelengths. Article in Journal/Newspaper South pole Université de Paris: Portail HAL Icarus 352 113947