Insights into the aging of biomass burning aerosol from satellite observations and 3D atmospheric modeling: Evolution of the aerosol optical properties in Siberian wildfire plumes
International audience Long-range transport of biomass burning (BB) aerosol from regions affected by wildfires is known to have a significant impact on the radiative balance and air quality in receptor regions, including the Arctic. However, the atmospheric evolution of the optical properties of BB...
Main Authors: | , , , |
---|---|
Other Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2020
|
Subjects: | |
Online Access: | https://hal.science/hal-03032163 https://hal.science/hal-03032163/document https://hal.science/hal-03032163/file/acp-2020-591_Konovalov_discussion.pdf https://doi.org/10.5194/acp-2020-591 |
Summary: | International audience Long-range transport of biomass burning (BB) aerosol from regions affected by wildfires is known to have a significant impact on the radiative balance and air quality in receptor regions, including the Arctic. However, the atmospheric evolution of the optical properties of BB aerosol during the long-range transport events is insufficiently understood, limiting the adequacy of representations of the aerosol processes in chemistry transport and climate models. Here we introduce a framework to infer and interpret changes of the optical properties of BB aerosol from satellite observations of multiple BB plumes. Our framework includes (1) a procedure for analysis of available satellite retrievals of the absorption and extinction aerosol optical depths (AAOD and AOD) and single scattering albedo (SSA) as a function of the BB aerosol photochemical age, and (2) a representation of the AAOD and AOD evolution with a chemistry transport model (CTM) involving a simpli |
---|