How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet

International audience Using lidar and radiative flux observations from space and ground, and a lidar simulator, we evaluate clouds simulated by climate models over the Greenland ice sheet, including predicted cloud cover, cloud fraction profile, cloud opacity, and surface cloud radiative effects. T...

Full description

Bibliographic Details
Published in:Journal of Climate
Main Authors: Lacour, A., Chepfer, H., Miller, N., B, Shupe, M., D, Noel, V., Fettweis, X., Gallee, H., Kay, J., E, Guzman, R., Cole, J.
Other Authors: Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL), Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS (UMR_7086)), Université Paris Diderot - Paris 7 (UPD7)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS), Département de Géographie, Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), University of Colorado Boulder, Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada (ECCC)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2018
Subjects:
Online Access:https://hal.sorbonne-universite.fr/hal-01993084
https://hal.sorbonne-universite.fr/hal-01993084/document
https://hal.sorbonne-universite.fr/hal-01993084/file/jcli-d-18-0023.1_sans%20marque.pdf
https://doi.org/10.1175/JCLI-D-18-0023.1
id ftunivparis:oai:HAL:hal-01993084v1
record_format openpolar
institution Open Polar
collection Université de Paris: Portail HAL
op_collection_id ftunivparis
language English
topic Atmosphere
Ice sheets
Cloud forcing
Clouds
Snowmelt/icemelt
General circulation models
[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
spellingShingle Atmosphere
Ice sheets
Cloud forcing
Clouds
Snowmelt/icemelt
General circulation models
[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
Lacour, A.
Chepfer, H.
Miller, N., B
Shupe, M., D
Noel, V.
Fettweis, X.
Gallee, H.
Kay, J., E
Guzman, R.
Cole, J.
How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet
topic_facet Atmosphere
Ice sheets
Cloud forcing
Clouds
Snowmelt/icemelt
General circulation models
[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
description International audience Using lidar and radiative flux observations from space and ground, and a lidar simulator, we evaluate clouds simulated by climate models over the Greenland ice sheet, including predicted cloud cover, cloud fraction profile, cloud opacity, and surface cloud radiative effects. The representation of clouds over Greenland is a central concern for the models because clouds impact ice sheet surface melt. We find that over Greenland, most of the models have insufficient cloud cover during summer. In addition, all models create too few nonopaque, liquid-containing clouds optically thin enough to let direct solar radiation reach the surface (−1% to −3.5% at the ground level). Some models create too few opaque clouds. In most climate models, the cloud properties biases identified over all Greenland also apply at Summit, Greenland, proving the value of the ground observatory in model evaluation. At Summit, climate models underestimate cloud radiative effect (CRE) at the surface, especially in summer. The primary driver of the summer CRE biases compared to observations is the underestimation of the cloud cover in summer (−46% to −21%), which leads to an underestimated longwave radiative warming effect (CRELW = −35.7 to −13.6 W m−2 compared to the ground observations) and an underestimated shortwave cooling effect (CRESW = +1.5 to +10.5 W m−2 compared to the ground observations). Overall, the simulated clouds do not radiatively warm the surface as much as observed.
author2 Laboratoire de Météorologie Dynamique (UMR 8539) (LMD)
Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS (UMR_7086))
Université Paris Diderot - Paris 7 (UPD7)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)
Département de Géographie
Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
University of Colorado Boulder
Canadian Centre for Climate Modelling and Analysis (CCCma)
Environment and Climate Change Canada (ECCC)
format Article in Journal/Newspaper
author Lacour, A.
Chepfer, H.
Miller, N., B
Shupe, M., D
Noel, V.
Fettweis, X.
Gallee, H.
Kay, J., E
Guzman, R.
Cole, J.
author_facet Lacour, A.
Chepfer, H.
Miller, N., B
Shupe, M., D
Noel, V.
Fettweis, X.
Gallee, H.
Kay, J., E
Guzman, R.
Cole, J.
author_sort Lacour, A.
title How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet
title_short How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet
title_full How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet
title_fullStr How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet
title_full_unstemmed How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet
title_sort how well are clouds simulated over greenland in climate models? consequences for the surface cloud radiative effect over the ice sheet
publisher HAL CCSD
publishDate 2018
url https://hal.sorbonne-universite.fr/hal-01993084
https://hal.sorbonne-universite.fr/hal-01993084/document
https://hal.sorbonne-universite.fr/hal-01993084/file/jcli-d-18-0023.1_sans%20marque.pdf
https://doi.org/10.1175/JCLI-D-18-0023.1
genre Greenland
Ice Sheet
genre_facet Greenland
Ice Sheet
op_source ISSN: 0894-8755
EISSN: 1520-0442
Journal of Climate
https://hal.sorbonne-universite.fr/hal-01993084
Journal of Climate, 2018, 31 (22), pp.9293-9312. ⟨10.1175/JCLI-D-18-0023.1⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1175/JCLI-D-18-0023.1
hal-01993084
https://hal.sorbonne-universite.fr/hal-01993084
https://hal.sorbonne-universite.fr/hal-01993084/document
https://hal.sorbonne-universite.fr/hal-01993084/file/jcli-d-18-0023.1_sans%20marque.pdf
doi:10.1175/JCLI-D-18-0023.1
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1175/JCLI-D-18-0023.1
container_title Journal of Climate
container_volume 31
container_issue 22
container_start_page 9293
op_container_end_page 9312
_version_ 1799480625202200576
spelling ftunivparis:oai:HAL:hal-01993084v1 2024-05-19T07:41:03+00:00 How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet Lacour, A. Chepfer, H. Miller, N., B Shupe, M., D Noel, V. Fettweis, X. Gallee, H. Kay, J., E Guzman, R. Cole, J. Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS (UMR_7086)) Université Paris Diderot - Paris 7 (UPD7)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) Département de Géographie Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) University of Colorado Boulder Canadian Centre for Climate Modelling and Analysis (CCCma) Environment and Climate Change Canada (ECCC) 2018 https://hal.sorbonne-universite.fr/hal-01993084 https://hal.sorbonne-universite.fr/hal-01993084/document https://hal.sorbonne-universite.fr/hal-01993084/file/jcli-d-18-0023.1_sans%20marque.pdf https://doi.org/10.1175/JCLI-D-18-0023.1 en eng HAL CCSD American Meteorological Society info:eu-repo/semantics/altIdentifier/doi/10.1175/JCLI-D-18-0023.1 hal-01993084 https://hal.sorbonne-universite.fr/hal-01993084 https://hal.sorbonne-universite.fr/hal-01993084/document https://hal.sorbonne-universite.fr/hal-01993084/file/jcli-d-18-0023.1_sans%20marque.pdf doi:10.1175/JCLI-D-18-0023.1 info:eu-repo/semantics/OpenAccess ISSN: 0894-8755 EISSN: 1520-0442 Journal of Climate https://hal.sorbonne-universite.fr/hal-01993084 Journal of Climate, 2018, 31 (22), pp.9293-9312. ⟨10.1175/JCLI-D-18-0023.1⟩ Atmosphere Ice sheets Cloud forcing Clouds Snowmelt/icemelt General circulation models [SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology info:eu-repo/semantics/article Journal articles 2018 ftunivparis https://doi.org/10.1175/JCLI-D-18-0023.1 2024-04-23T03:47:08Z International audience Using lidar and radiative flux observations from space and ground, and a lidar simulator, we evaluate clouds simulated by climate models over the Greenland ice sheet, including predicted cloud cover, cloud fraction profile, cloud opacity, and surface cloud radiative effects. The representation of clouds over Greenland is a central concern for the models because clouds impact ice sheet surface melt. We find that over Greenland, most of the models have insufficient cloud cover during summer. In addition, all models create too few nonopaque, liquid-containing clouds optically thin enough to let direct solar radiation reach the surface (−1% to −3.5% at the ground level). Some models create too few opaque clouds. In most climate models, the cloud properties biases identified over all Greenland also apply at Summit, Greenland, proving the value of the ground observatory in model evaluation. At Summit, climate models underestimate cloud radiative effect (CRE) at the surface, especially in summer. The primary driver of the summer CRE biases compared to observations is the underestimation of the cloud cover in summer (−46% to −21%), which leads to an underestimated longwave radiative warming effect (CRELW = −35.7 to −13.6 W m−2 compared to the ground observations) and an underestimated shortwave cooling effect (CRESW = +1.5 to +10.5 W m−2 compared to the ground observations). Overall, the simulated clouds do not radiatively warm the surface as much as observed. Article in Journal/Newspaper Greenland Ice Sheet Université de Paris: Portail HAL Journal of Climate 31 22 9293 9312