Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion
International audience Between 2008 and 2010, the Arctic Oscillation index over Arctic regions shifted from positive values corresponding to more cyclonic conditions prevailing during the 4th International Polar Year (IPY) period (2007-2008) to extremely negative values corresponding to strong antic...
Published in: | Ocean Science |
---|---|
Main Authors: | , , , |
Other Authors: | , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2013
|
Subjects: | |
Online Access: | https://hal.science/hal-01496011 https://hal.science/hal-01496011/document https://hal.science/hal-01496011/file/os-9-447-2013.pdf https://doi.org/10.5194/os-9-447-2013 |
Summary: | International audience Between 2008 and 2010, the Arctic Oscillation index over Arctic regions shifted from positive values corresponding to more cyclonic conditions prevailing during the 4th International Polar Year (IPY) period (2007-2008) to extremely negative values corresponding to strong anticy-clonic conditions in 2010. In this context, we investigated the recent large-scale evolution of the upper western Arctic Ocean, based on temperature and salinity summertime observations collected during icebreaker campaigns and from ice-tethered profilers (ITPs) drifting across the region in 2008 and 2010. Particularly, we focused on (1) the freshwater content which was extensively studied during previous years, (2) the near-surface temperature maximum due to incoming solar radiation, and (3) the water masses advected from the Pacific Ocean into the Arctic Ocean. The observations revealed a freshwater content change in the Canadian Basin during this time period. South of 80 • N, the freshwater content increased, while north of 80 • N, less freshening occurred in 2010 compared to 2008. This was more likely due to the strong anticyclonicity characteristic of a low AO index mode that enhanced both a wind-generated Ekman pumping in the Beaufort Gyre and a possible diversion of the Siberian River runoff toward the Eurasian Basin at the same time. The near-surface temperature maximum due to incoming solar radiation was almost 1 • C colder in the southern Canada Basin (south of 75 • N) in 2010 compared to 2008, which contrasted with the positive trend observed during previous years. This was more likely due to higher summer sea ice concentration in 2010 compared to 2008 in that region, and surface albedo feedback reflecting more sun radiation back in space. The Pacific water (PaW) was also subjected to strong spatial and temporal variability between 2008 and 2010. In the Canada Basin, both summer and winter PaW signatures were stronger between 75 • N and 80 • N. This was more likely due to a strong recirculation within ... |
---|