On the Classical Limit of the Schrödinger Equation

21 pages This paper provides an elementary proof of the classical limit of the Schrödinger equation with WKB type initial data and over arbitrary long finite time intervals. We use only the stationary phase method and the Laptev-Sigal simple and elegant construction of a parametrix for Schrödinger t...

Full description

Bibliographic Details
Published in:Discrete and Continuous Dynamical Systems
Main Authors: Bardos, Claude, Golse, François, Markowich, Peter, Paul, Thierry
Other Authors: Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), MCSE Division, King Abdullah University of Science and Technology Saudi Arabia (KAUST)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2015
Subjects:
Online Access:https://polytechnique.hal.science/hal-01074071
https://polytechnique.hal.science/hal-01074071/document
https://polytechnique.hal.science/hal-01074071/file/WKB.pdf
https://doi.org/10.3934/dcds.2015.35.5689
Description
Summary:21 pages This paper provides an elementary proof of the classical limit of the Schrödinger equation with WKB type initial data and over arbitrary long finite time intervals. We use only the stationary phase method and the Laptev-Sigal simple and elegant construction of a parametrix for Schrödinger type equations [A. Laptev, I. Sigal, Review of Math. Phys. 12 (2000), 749-766]. We also explain in detail how the phase shifts across caustics obtained when using the Laptev-Sigal parametrix are related to the Maslov index.