North Atlantic Drift Sediments Constrain Eocene Tidal Dissipation and the Evolution of the Earth-Moon System

Cyclostratigraphy and astrochronology are now at the forefront of geologic timekeeping. While this technique heavily relies on the accuracy of astronomical calculations, solar system chaos limits how far back astronomical calculations can be performed with confidence. High-resolution paleoclimate re...

Full description

Bibliographic Details
Published in:Paleoceanography and Paleoclimatology
Main Authors: De Vleeschouwer D., Penman D. E., D'haenens S., Wu F., Westerhold T., Vahlenkamp M., Cappelli C., Agnini C., Kordesch W. E. C., King D. J., van der Ploeg R., Pälike H., Turner S. K., Wilson P., Norris R. D., Zachos J. C., Bohaty S. M., Hull P. M.
Other Authors: De Vleeschouwer, D., Penman, D. E., D'Haenens, S., Wu, F., Westerhold, T., Vahlenkamp, M., Cappelli, C., Agnini, C., Kordesch, W. E. C., King, D. J., van der Ploeg, R., Pälike, H., Turner, S. K., Wilson, P., Norris, R. D., Zachos, J. C., Bohaty, S. M., Hull, P. M.
Format: Article in Journal/Newspaper
Language:English
Published: AMER GEOPHYSICAL UNION 2023
Subjects:
Online Access:https://hdl.handle.net/11577/3479880
https://doi.org/10.1029/2022PA004555
id ftunivpadovairis:oai:www.research.unipd.it:11577/3479880
record_format openpolar
spelling ftunivpadovairis:oai:www.research.unipd.it:11577/3479880 2024-02-27T08:43:04+00:00 North Atlantic Drift Sediments Constrain Eocene Tidal Dissipation and the Evolution of the Earth-Moon System De Vleeschouwer D. Penman D. E. D'haenens S. Wu F. Westerhold T. Vahlenkamp M. Cappelli C. Agnini C. Kordesch W. E. C. King D. J. van der Ploeg R. Pälike H. Turner S. K. Wilson P. Norris R. D. Zachos J. C. Bohaty S. M. Hull P. M. De Vleeschouwer, D. Penman, D. E. D'Haenens, S. Wu, F. Westerhold, T. Vahlenkamp, M. Cappelli, C. Agnini, C. Kordesch, W. E. C. King, D. J. van der Ploeg, R. Pälike, H. Turner, S. K. Wilson, P. Norris, R. D. Zachos, J. C. Bohaty, S. M. Hull, P. M. 2023 https://hdl.handle.net/11577/3479880 https://doi.org/10.1029/2022PA004555 eng eng AMER GEOPHYSICAL UNION info:eu-repo/semantics/altIdentifier/wos/WOS:001000274100006 volume:38 issue:2 journal:PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY https://hdl.handle.net/11577/3479880 doi:10.1029/2022PA004555 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85148756600 info:eu-repo/semantics/openAccess info:eu-repo/semantics/article 2023 ftunivpadovairis https://doi.org/10.1029/2022PA004555 2024-01-31T17:34:22Z Cyclostratigraphy and astrochronology are now at the forefront of geologic timekeeping. While this technique heavily relies on the accuracy of astronomical calculations, solar system chaos limits how far back astronomical calculations can be performed with confidence. High-resolution paleoclimate records with Milankovitch imprints now allow reversing the traditional cyclostratigraphic approach: Middle Eocene drift sediments from Newfoundland Ridge are well-suited for this purpose, due to high sedimentation rates and distinct lithological cycles. Per contra, the stratigraphies of Integrated Ocean Drilling Program Sites U1408-U1410 are highly complex with several hiatuses. Here, we built a two-site composite and constructed a conservative age-depth model to provide a reliable chronology for this rhythmic, highly resolved (< 1 kyr) sedimentary archive. Astronomical components (g-terms and precession constant) are extracted from proxy time-series using two different techniques, producing consistent results. We find astronomical frequencies up to 4% lower than reported in astronomical solution La04. This solution, however, was smoothed over 20-Myr intervals, and our results therefore provide constraints on g-term variability on shorter, million-year timescales. We also report first evidence that the g(4)-g(3) grand eccentricity cycle may have had a 1.2-Myr period around 41 Ma, contrary to its 2.4-Myr periodicity today. Our median precession constant estimate (51.28 +/- 0.56 ''/year) confirms earlier indicators of a relatively low rate of tidal dissipation in the Paleogene. Newfoundland Ridge drift sediments thus enable a reliable reconstruction of astronomical components at the limit of validity of current astronomical calculations, extracted from geologic data, providing a new target for the next generation of astronomical calculations. Plain Language Summary The traditional cyclostratigraphic approach is to align and correlate a geologic depth-series with an astronomical solution. However, the chaotic nature of ... Article in Journal/Newspaper Newfoundland North Atlantic Padua Research Archive (IRIS - Università degli Studi di Padova) Paleoceanography and Paleoclimatology 38 2
institution Open Polar
collection Padua Research Archive (IRIS - Università degli Studi di Padova)
op_collection_id ftunivpadovairis
language English
description Cyclostratigraphy and astrochronology are now at the forefront of geologic timekeeping. While this technique heavily relies on the accuracy of astronomical calculations, solar system chaos limits how far back astronomical calculations can be performed with confidence. High-resolution paleoclimate records with Milankovitch imprints now allow reversing the traditional cyclostratigraphic approach: Middle Eocene drift sediments from Newfoundland Ridge are well-suited for this purpose, due to high sedimentation rates and distinct lithological cycles. Per contra, the stratigraphies of Integrated Ocean Drilling Program Sites U1408-U1410 are highly complex with several hiatuses. Here, we built a two-site composite and constructed a conservative age-depth model to provide a reliable chronology for this rhythmic, highly resolved (< 1 kyr) sedimentary archive. Astronomical components (g-terms and precession constant) are extracted from proxy time-series using two different techniques, producing consistent results. We find astronomical frequencies up to 4% lower than reported in astronomical solution La04. This solution, however, was smoothed over 20-Myr intervals, and our results therefore provide constraints on g-term variability on shorter, million-year timescales. We also report first evidence that the g(4)-g(3) grand eccentricity cycle may have had a 1.2-Myr period around 41 Ma, contrary to its 2.4-Myr periodicity today. Our median precession constant estimate (51.28 +/- 0.56 ''/year) confirms earlier indicators of a relatively low rate of tidal dissipation in the Paleogene. Newfoundland Ridge drift sediments thus enable a reliable reconstruction of astronomical components at the limit of validity of current astronomical calculations, extracted from geologic data, providing a new target for the next generation of astronomical calculations. Plain Language Summary The traditional cyclostratigraphic approach is to align and correlate a geologic depth-series with an astronomical solution. However, the chaotic nature of ...
author2 De Vleeschouwer, D.
Penman, D. E.
D'Haenens, S.
Wu, F.
Westerhold, T.
Vahlenkamp, M.
Cappelli, C.
Agnini, C.
Kordesch, W. E. C.
King, D. J.
van der Ploeg, R.
Pälike, H.
Turner, S. K.
Wilson, P.
Norris, R. D.
Zachos, J. C.
Bohaty, S. M.
Hull, P. M.
format Article in Journal/Newspaper
author De Vleeschouwer D.
Penman D. E.
D'haenens S.
Wu F.
Westerhold T.
Vahlenkamp M.
Cappelli C.
Agnini C.
Kordesch W. E. C.
King D. J.
van der Ploeg R.
Pälike H.
Turner S. K.
Wilson P.
Norris R. D.
Zachos J. C.
Bohaty S. M.
Hull P. M.
spellingShingle De Vleeschouwer D.
Penman D. E.
D'haenens S.
Wu F.
Westerhold T.
Vahlenkamp M.
Cappelli C.
Agnini C.
Kordesch W. E. C.
King D. J.
van der Ploeg R.
Pälike H.
Turner S. K.
Wilson P.
Norris R. D.
Zachos J. C.
Bohaty S. M.
Hull P. M.
North Atlantic Drift Sediments Constrain Eocene Tidal Dissipation and the Evolution of the Earth-Moon System
author_facet De Vleeschouwer D.
Penman D. E.
D'haenens S.
Wu F.
Westerhold T.
Vahlenkamp M.
Cappelli C.
Agnini C.
Kordesch W. E. C.
King D. J.
van der Ploeg R.
Pälike H.
Turner S. K.
Wilson P.
Norris R. D.
Zachos J. C.
Bohaty S. M.
Hull P. M.
author_sort De Vleeschouwer D.
title North Atlantic Drift Sediments Constrain Eocene Tidal Dissipation and the Evolution of the Earth-Moon System
title_short North Atlantic Drift Sediments Constrain Eocene Tidal Dissipation and the Evolution of the Earth-Moon System
title_full North Atlantic Drift Sediments Constrain Eocene Tidal Dissipation and the Evolution of the Earth-Moon System
title_fullStr North Atlantic Drift Sediments Constrain Eocene Tidal Dissipation and the Evolution of the Earth-Moon System
title_full_unstemmed North Atlantic Drift Sediments Constrain Eocene Tidal Dissipation and the Evolution of the Earth-Moon System
title_sort north atlantic drift sediments constrain eocene tidal dissipation and the evolution of the earth-moon system
publisher AMER GEOPHYSICAL UNION
publishDate 2023
url https://hdl.handle.net/11577/3479880
https://doi.org/10.1029/2022PA004555
genre Newfoundland
North Atlantic
genre_facet Newfoundland
North Atlantic
op_relation info:eu-repo/semantics/altIdentifier/wos/WOS:001000274100006
volume:38
issue:2
journal:PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY
https://hdl.handle.net/11577/3479880
doi:10.1029/2022PA004555
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85148756600
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1029/2022PA004555
container_title Paleoceanography and Paleoclimatology
container_volume 38
container_issue 2
_version_ 1792050969679233024