Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities

Abstract Tundra dominates two-thirds of the unglaciated, terrestrial Arctic. Although this region has experienced rapid and widespread changes in vegetation phenology and productivity over the last several decades, the specific climatic drivers responsible for this change remain poorly understood. H...

Full description

Bibliographic Details
Main Authors: Kelsey, K. C. (Katharine C.), Højlund Pedersen, S. (Stine), Leffler, A. J. (A. Joshua), Sexton, J. O. (Joseph O.), Feng, M. (Min), Welker, J. M. (Jeffrey M.)
Format: Article in Journal/Newspaper
Language:English
Published: John Wiley & Sons 2021
Subjects:
Online Access:http://urn.fi/urn:nbn:fi-fe2021070140820
id ftunivoulu:oai:oulu.fi:nbnfi-fe2021070140820
record_format openpolar
spelling ftunivoulu:oai:oulu.fi:nbnfi-fe2021070140820 2023-07-30T04:01:13+02:00 Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities Kelsey, K. C. (Katharine C.) Højlund Pedersen, S. (Stine) Leffler, A. J. (A. Joshua) Sexton, J. O. (Joseph O.) Feng, M. (Min) Welker, J. M. (Jeffrey M.) 2021 application/pdf http://urn.fi/urn:nbn:fi-fe2021070140820 eng eng John Wiley & Sons info:eu-repo/semantics/openAccess © 2020 John Wiley & Sons Ltd. This is the peer reviewed version of the following article: Kelsey, K.C., Pedersen, S.H., Leffler, A.J., Sexton, J.O., Feng, M. and Welker, J.M. (2021), Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Glob. Change Biol., 27: 1572-1586, which has been published in final form at https://doi.org/10.1111/gcb.15505. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Alaska GS NDVI NDVI SnowModel end of season growing degree days peak of season snow water equivalent snowmelt start of season info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion 2021 ftunivoulu 2023-07-08T19:58:42Z Abstract Tundra dominates two-thirds of the unglaciated, terrestrial Arctic. Although this region has experienced rapid and widespread changes in vegetation phenology and productivity over the last several decades, the specific climatic drivers responsible for this change remain poorly understood. Here we quantified the effect of winter snowpack and early spring temperature conditions on growing season vegetation phenology (timing of the start, peak, and end of the growing season) and productivity of the dominant tundra vegetation communities of Arctic Alaska. We used daily remotely sensed normalized difference vegetation index (NDVI), and daily snowpack and temperature variables produced by SnowModel and MicroMet, coupled physically based snow and meteorological modeling tools, to (1) determine the most important snowpack and thermal controls on tundra vegetation phenology and productivity and (2) describe the direction of these relationships within each vegetation community. Our results show that soil temperature under the snowpack, snowmelt timing, and air temperature following snowmelt are the most important drivers of growing season timing and productivity among Arctic vegetation communities. Air temperature after snowmelt was the most important control on timing of season start and end, with warmer conditions contributing to earlier phenology in all vegetation communities. In contrast, the controls on the timing of peak season and productivity also included snowmelt timing and soil temperature under the snowpack, dictated in part by the snow insulating capacity. The results of this novel analysis suggest that while future warming effects on phenology may be consistent across communities of the tundra biome, warming may result in divergent, community-specific productivity responses if coupled with reduced snow insulating capacity lowers winter soil temperature and potential nutrient cycling in the soil. Article in Journal/Newspaper Arctic Tundra Alaska Jultika - University of Oulu repository Arctic
institution Open Polar
collection Jultika - University of Oulu repository
op_collection_id ftunivoulu
language English
topic Alaska
GS NDVI
NDVI
SnowModel
end of season
growing degree days
peak of season
snow water equivalent
snowmelt
start of season
spellingShingle Alaska
GS NDVI
NDVI
SnowModel
end of season
growing degree days
peak of season
snow water equivalent
snowmelt
start of season
Kelsey, K. C. (Katharine C.)
Højlund Pedersen, S. (Stine)
Leffler, A. J. (A. Joshua)
Sexton, J. O. (Joseph O.)
Feng, M. (Min)
Welker, J. M. (Jeffrey M.)
Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities
topic_facet Alaska
GS NDVI
NDVI
SnowModel
end of season
growing degree days
peak of season
snow water equivalent
snowmelt
start of season
description Abstract Tundra dominates two-thirds of the unglaciated, terrestrial Arctic. Although this region has experienced rapid and widespread changes in vegetation phenology and productivity over the last several decades, the specific climatic drivers responsible for this change remain poorly understood. Here we quantified the effect of winter snowpack and early spring temperature conditions on growing season vegetation phenology (timing of the start, peak, and end of the growing season) and productivity of the dominant tundra vegetation communities of Arctic Alaska. We used daily remotely sensed normalized difference vegetation index (NDVI), and daily snowpack and temperature variables produced by SnowModel and MicroMet, coupled physically based snow and meteorological modeling tools, to (1) determine the most important snowpack and thermal controls on tundra vegetation phenology and productivity and (2) describe the direction of these relationships within each vegetation community. Our results show that soil temperature under the snowpack, snowmelt timing, and air temperature following snowmelt are the most important drivers of growing season timing and productivity among Arctic vegetation communities. Air temperature after snowmelt was the most important control on timing of season start and end, with warmer conditions contributing to earlier phenology in all vegetation communities. In contrast, the controls on the timing of peak season and productivity also included snowmelt timing and soil temperature under the snowpack, dictated in part by the snow insulating capacity. The results of this novel analysis suggest that while future warming effects on phenology may be consistent across communities of the tundra biome, warming may result in divergent, community-specific productivity responses if coupled with reduced snow insulating capacity lowers winter soil temperature and potential nutrient cycling in the soil.
format Article in Journal/Newspaper
author Kelsey, K. C. (Katharine C.)
Højlund Pedersen, S. (Stine)
Leffler, A. J. (A. Joshua)
Sexton, J. O. (Joseph O.)
Feng, M. (Min)
Welker, J. M. (Jeffrey M.)
author_facet Kelsey, K. C. (Katharine C.)
Højlund Pedersen, S. (Stine)
Leffler, A. J. (A. Joshua)
Sexton, J. O. (Joseph O.)
Feng, M. (Min)
Welker, J. M. (Jeffrey M.)
author_sort Kelsey, K. C. (Katharine C.)
title Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities
title_short Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities
title_full Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities
title_fullStr Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities
title_full_unstemmed Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities
title_sort winter snow and spring temperature have differential effects on vegetation phenology and productivity across arctic plant communities
publisher John Wiley & Sons
publishDate 2021
url http://urn.fi/urn:nbn:fi-fe2021070140820
geographic Arctic
geographic_facet Arctic
genre Arctic
Tundra
Alaska
genre_facet Arctic
Tundra
Alaska
op_rights info:eu-repo/semantics/openAccess
© 2020 John Wiley & Sons Ltd. This is the peer reviewed version of the following article: Kelsey, K.C., Pedersen, S.H., Leffler, A.J., Sexton, J.O., Feng, M. and Welker, J.M. (2021), Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Glob. Change Biol., 27: 1572-1586, which has been published in final form at https://doi.org/10.1111/gcb.15505. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
_version_ 1772811969730969600