Characterization of thermally modified wood by NMR spectroscopy:microstructure and moisture components

Abstract Wood is an essential material that has many applications in the fields of engineering and especially in the forest industry, which is particularly important in Fennoscandia. Among the various modification methods for wood, thermal modification has grown substantially over the past decades....

Full description

Bibliographic Details
Main Author: Kekkonen, P. (Päivi)
Other Authors: Telkki, V. (Ville-Veikko), Jokisaari, J. (Jukka)
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Oulun yliopisto 2014
Subjects:
Online Access:http://urn.fi/urn:isbn:9789526206127
Description
Summary:Abstract Wood is an essential material that has many applications in the fields of engineering and especially in the forest industry, which is particularly important in Fennoscandia. Among the various modification methods for wood, thermal modification has grown substantially over the past decades. It is an environmentally friendly method for increasing the lifetime and usability of timber. The aim of this thesis is to characterize the properties of thermally modified wood as well as to obtain new information on the changes taking place in pinewood due to the thermal modification process. Several NMR methods were used to gain information on the effect of thermal modification on the microstructure and moisture components of Pinus sylvestris pinewood. Pinewood samples thermally modified at different temperatures were studied and compared to corresponding unmodified wood samples. Diffusion of water and methane was studied using pulsed-field-gradient stimulated-echo measurements to determine the highly anisotropic size distribution of pores in different cell structures of pinewood. NMR cryoporometry and relaxometry measurements were conducted to gain information on the amounts and environments of both the bound and free water absorbed into the wood samples. Cryoporometry measurements resulted in an upper limit value for the size of bound water sites and the combination of cryoporometry and relaxometry data enabled the size determination of cell wall micropores. Magnetic resonance imaging was used to visualize the spatial distribution of absorbed free water in the studied samples. Together these methods give a broad overall picture of the effects of the modification process. The results of this work give new insight into the microstructure of thermally modified pinewood and its relationship to moisture, which is of importance for both wood science as well as industry. The applicability of the NMR techniques used here to the study of wood is also proven in this work. Using the techniques developed, it is possible to ...