Radiation belt electron precipitation due to geomagnetic storms: Significance to middle atmosphere ozone chemistry

International audience [1] Geomagnetic storms triggered by coronal mass ejections and high‐speed solar wind streams can lead to enhanced losses of energetic electrons from the radiation belts into the atmosphere, both during the storm itself and also through the poststorm relaxation of enhanced radi...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Space Physics
Main Authors: Rodger, Craig J., Clilverd, Mark A., Seppälä, Annika, Thomson, Neil R., Gamble, Rory J., Parrot, Michel, Sauvaud, Jean‐andré, Ulich, Thomas
Other Authors: Department of Physics Dunedin, University of Otago Dunedin, Nouvelle-Zélande, British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Finnish Meteorological Institute (FMI), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales Paris (CNES), Centre d'étude spatiale des rayonnements (CESR), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS), Sodankylä Geophysical Observatory, University of Oulu, LAPBIAT2 program (contract RITA‐CT‐2006‐025969), European Project: 237461,EC:FP7:PEOPLE,FP7-PEOPLE-IEF-2008,EPPIC(2009)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2010
Subjects:
Online Access:https://insu.hal.science/insu-01254033
https://insu.hal.science/insu-01254033/document
https://insu.hal.science/insu-01254033/file/jgra20708.pdf
https://doi.org/10.1029/2010JA015599
Description
Summary:International audience [1] Geomagnetic storms triggered by coronal mass ejections and high‐speed solar wind streams can lead to enhanced losses of energetic electrons from the radiation belts into the atmosphere, both during the storm itself and also through the poststorm relaxation of enhanced radiation belt fluxes. In this study we have analyzed the impact of electron precipitation on atmospheric chemistry (30–90 km altitudes) as a result of a single geomagnetic storm. The study conditions were chosen such that there was no influence of solar proton precipitation, and thus we were able to determine the storm‐induced outer radiation belt electron precipitation fluxes. We use ground‐based subionospheric radio wave observations to infer the electron precipitation fluxes at L = 3.2 during a geomagnetic disturbance which occurred in September 2005. Through application of the Sodankylä Ion and Neutral Chemistry model, we examine the significance of this particular period of electron precipitation to neutral atmospheric chemistry. Building on an earlier study, we refine the quantification of the electron precipitation flux into the atmosphere by using a time‐varying energy spectrum determined from the DEMETER satellite. We show that the large increases in odd nitrogen (NO x) and odd hydrogen (HO x) caused by the electron precipitation do not lead to significant in situ ozone depletion in September in the Northern Hemisphere. However, had the same precipitation been deposited into the polar winter atmosphere, it would have led to >20% in situ decreases in O 3 at 65–80 km altitudes through catalytic HO x cycles, with possible additional stratospheric O 3 depletion from descending NO x beyond the model simulation period. Citation: Rodger, C. J., M. A. Clilverd, A. Seppälä, N. R. Thomson, R. J. Gamble, M. Parrot, J.‐A. Sauvaud, and T. Ulich (2010), Radiation belt electron precipitation due to geomagnetic storms: Significance to middle atmosphere ozone chemistry