Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing

International audience The conventional view holds that the oxidation state of a mantle-derived degassed magma reflects its source. During magma ascent and degassing the oxidation state is thought to follow a redox buffer. While this view has been challenged by petrological data, geochemical models...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Moussallam, Yves, Oppenheimer, Clive, Scaillet, Bruno, Gaillard, Fabrice, Kyle, Philip R., Peters, Nial, Hartley, Margaret, Berlo, Kim, Donovan, Amy
Other Authors: Department of Geography Cambridge, UK, University of Cambridge UK (CAM), Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO), Bureau de Recherches Géologiques et Minières (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), New Mexico Institute of Mining and Technology New Mexico Tech (NMT), Department of Earth Sciences Cambridge, UK, Department of Earth Sciences Oxford, University of Oxford, NSF and United States Antarctic Program (grant ANT1142083), European Project: 279790,EC:FP7:ERC,ERC-2011-StG_20101014,ELECTROLITH(2011)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2014
Subjects:
CO2
Online Access:https://insu.hal.science/insu-00966727
https://insu.hal.science/insu-00966727/document
https://insu.hal.science/insu-00966727/file/Mantle_to_surface_tracking_EPSL_Revised_v4.pdf
https://doi.org/10.1016/j.epsl.2014.02.055
id ftunivorleans:oai:HAL:insu-00966727v1
record_format openpolar
institution Open Polar
collection Université d'Orléans: HAL
op_collection_id ftunivorleans
language English
topic oxygen fugacity
sulfur
degassing
XANES
melt inclusions
CO2
[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology
[SDE.MCG]Environmental Sciences/Global Changes
spellingShingle oxygen fugacity
sulfur
degassing
XANES
melt inclusions
CO2
[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology
[SDE.MCG]Environmental Sciences/Global Changes
Moussallam, Yves
Oppenheimer, Clive
Scaillet, Bruno
Gaillard, Fabrice
Kyle, Philip R.
Peters, Nial
Hartley, Margaret
Berlo, Kim
Donovan, Amy
Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing
topic_facet oxygen fugacity
sulfur
degassing
XANES
melt inclusions
CO2
[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology
[SDE.MCG]Environmental Sciences/Global Changes
description International audience The conventional view holds that the oxidation state of a mantle-derived degassed magma reflects its source. During magma ascent and degassing the oxidation state is thought to follow a redox buffer. While this view has been challenged by petrological data, geochemical models and volcanic gas measurements, the fingerprints of such redox changes and their driving forces have not hitherto been captured by an integrated study. Here, we track the redox evolution of an alkaline magmatic suite at Erebus volcano, Antarctica, from the mantle to the surface, using X-ray absorption near-edge structure (XANES) spectroscopy at the iron and sulphur K-edges. We find that strong reduction of Fe and S dissolved in the melt accompanies magma ascent. Using a model of gas-melt chemical equilibria, we show that sulphur degassing is the driving force behind this evolutionary trend, which spans a wide compositional and depth range. Our results explain puzzling shifts in the oxidation state of gases emitted from Erebus volcano, and indicate that, where sulphur degassing occurs, the oxidation states of degassed volcanic rocks may not reflect their mantle source or co-eruptive gas phase. This calls for caution when inferring the oxidation state of the upper mantle from extrusive rocks and a possible re-assessment of the contribution of volcanic degassing to the early Earth's atmosphere and oceans. The relationship between magma redox conditions and pressure (depth) emphasises the value of measuring redox couples in gases emitted from volcanoes for the purposes of operational forecasting.
author2 Department of Geography Cambridge, UK
University of Cambridge UK (CAM)
Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO)
Bureau de Recherches Géologiques et Minières (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
New Mexico Institute of Mining and Technology New Mexico Tech (NMT)
Department of Earth Sciences Cambridge, UK
Department of Earth Sciences Oxford
University of Oxford
NSF and United States Antarctic Program (grant ANT1142083)
European Project: 279790,EC:FP7:ERC,ERC-2011-StG_20101014,ELECTROLITH(2011)
format Article in Journal/Newspaper
author Moussallam, Yves
Oppenheimer, Clive
Scaillet, Bruno
Gaillard, Fabrice
Kyle, Philip R.
Peters, Nial
Hartley, Margaret
Berlo, Kim
Donovan, Amy
author_facet Moussallam, Yves
Oppenheimer, Clive
Scaillet, Bruno
Gaillard, Fabrice
Kyle, Philip R.
Peters, Nial
Hartley, Margaret
Berlo, Kim
Donovan, Amy
author_sort Moussallam, Yves
title Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing
title_short Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing
title_full Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing
title_fullStr Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing
title_full_unstemmed Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing
title_sort tracking the changing oxidation state of erebus magmas, from mantle to surface, driven by magma ascent and degassing
publisher HAL CCSD
publishDate 2014
url https://insu.hal.science/insu-00966727
https://insu.hal.science/insu-00966727/document
https://insu.hal.science/insu-00966727/file/Mantle_to_surface_tracking_EPSL_Revised_v4.pdf
https://doi.org/10.1016/j.epsl.2014.02.055
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_source ISSN: 0012-821X
Earth and Planetary Science Letters
https://insu.hal.science/insu-00966727
Earth and Planetary Science Letters, 2014, 393, pp.200-209. ⟨10.1016/j.epsl.2014.02.055⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2014.02.055
info:eu-repo/grantAgreement/EC/FP7/279790/EU/Electrical Petrology: tracking mantle melting and volatiles cycling using electrical conductivity/ELECTROLITH
insu-00966727
https://insu.hal.science/insu-00966727
https://insu.hal.science/insu-00966727/document
https://insu.hal.science/insu-00966727/file/Mantle_to_surface_tracking_EPSL_Revised_v4.pdf
doi:10.1016/j.epsl.2014.02.055
op_rights http://creativecommons.org/licenses/by-nc-nd/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1016/j.epsl.2014.02.055
container_title Earth and Planetary Science Letters
container_volume 393
container_start_page 200
op_container_end_page 209
_version_ 1799469736710373376
spelling ftunivorleans:oai:HAL:insu-00966727v1 2024-05-19T07:31:51+00:00 Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing Moussallam, Yves Oppenheimer, Clive Scaillet, Bruno Gaillard, Fabrice Kyle, Philip R. Peters, Nial Hartley, Margaret Berlo, Kim Donovan, Amy Department of Geography Cambridge, UK University of Cambridge UK (CAM) Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO) Bureau de Recherches Géologiques et Minières (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS) New Mexico Institute of Mining and Technology New Mexico Tech (NMT) Department of Earth Sciences Cambridge, UK Department of Earth Sciences Oxford University of Oxford NSF and United States Antarctic Program (grant ANT1142083) European Project: 279790,EC:FP7:ERC,ERC-2011-StG_20101014,ELECTROLITH(2011) 2014 https://insu.hal.science/insu-00966727 https://insu.hal.science/insu-00966727/document https://insu.hal.science/insu-00966727/file/Mantle_to_surface_tracking_EPSL_Revised_v4.pdf https://doi.org/10.1016/j.epsl.2014.02.055 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2014.02.055 info:eu-repo/grantAgreement/EC/FP7/279790/EU/Electrical Petrology: tracking mantle melting and volatiles cycling using electrical conductivity/ELECTROLITH insu-00966727 https://insu.hal.science/insu-00966727 https://insu.hal.science/insu-00966727/document https://insu.hal.science/insu-00966727/file/Mantle_to_surface_tracking_EPSL_Revised_v4.pdf doi:10.1016/j.epsl.2014.02.055 http://creativecommons.org/licenses/by-nc-nd/ info:eu-repo/semantics/OpenAccess ISSN: 0012-821X Earth and Planetary Science Letters https://insu.hal.science/insu-00966727 Earth and Planetary Science Letters, 2014, 393, pp.200-209. ⟨10.1016/j.epsl.2014.02.055⟩ oxygen fugacity sulfur degassing XANES melt inclusions CO2 [SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology [SDE.MCG]Environmental Sciences/Global Changes info:eu-repo/semantics/article Journal articles 2014 ftunivorleans https://doi.org/10.1016/j.epsl.2014.02.055 2024-05-01T23:53:07Z International audience The conventional view holds that the oxidation state of a mantle-derived degassed magma reflects its source. During magma ascent and degassing the oxidation state is thought to follow a redox buffer. While this view has been challenged by petrological data, geochemical models and volcanic gas measurements, the fingerprints of such redox changes and their driving forces have not hitherto been captured by an integrated study. Here, we track the redox evolution of an alkaline magmatic suite at Erebus volcano, Antarctica, from the mantle to the surface, using X-ray absorption near-edge structure (XANES) spectroscopy at the iron and sulphur K-edges. We find that strong reduction of Fe and S dissolved in the melt accompanies magma ascent. Using a model of gas-melt chemical equilibria, we show that sulphur degassing is the driving force behind this evolutionary trend, which spans a wide compositional and depth range. Our results explain puzzling shifts in the oxidation state of gases emitted from Erebus volcano, and indicate that, where sulphur degassing occurs, the oxidation states of degassed volcanic rocks may not reflect their mantle source or co-eruptive gas phase. This calls for caution when inferring the oxidation state of the upper mantle from extrusive rocks and a possible re-assessment of the contribution of volcanic degassing to the early Earth's atmosphere and oceans. The relationship between magma redox conditions and pressure (depth) emphasises the value of measuring redox couples in gases emitted from volcanoes for the purposes of operational forecasting. Article in Journal/Newspaper Antarc* Antarctica Université d'Orléans: HAL Earth and Planetary Science Letters 393 200 209