Modeling the response of plants and ecosystems to CO{sub 2} and climate change. Final technical report, September 1, 1992--August 31, 1996
Objectives can be divided into those for plant modeling and those for ecosystem modeling and experimental work in support of both. The author worked in a variety of ecosystem types, including pine, arctic, desert, and grasslands. Plant modeling objectives are: (1) to construct generic models of leaf...
Main Author: | |
---|---|
Other Authors: | |
Format: | Report |
Language: | English |
Published: |
Duke Univ., Dept. of Botany, Durham, NC 27708 (United States)
1998
|
Subjects: | |
Online Access: | https://doi.org/10.2172/610253 https://digital.library.unt.edu/ark:/67531/metadc693135/ |
Summary: | Objectives can be divided into those for plant modeling and those for ecosystem modeling and experimental work in support of both. The author worked in a variety of ecosystem types, including pine, arctic, desert, and grasslands. Plant modeling objectives are: (1) to construct generic models of leaf, canopy, and whole-plant response to elevated CO{sub 2} and climate change; (2) to validate predictions of whole-plant response against various field studies of elevated CO{sub 2} and climate change; (3) to use these models to test specific hypotheses and to make predictions about primary, secondary and tertiary effects of elevated CO{sub 2} and climate change on individual plants for conditions and time frames beyond those used to calibrate the model; and (4) to provide information to higher-level models, such as community models and ecosystem models. Ecosystem level modeling objectives are: (1) to incorporate models of plant responses to elevated CO{sub 2} into a generic ecosystem model in order to predict the direct and indirect effects of elevated CO{sub 2} and climate change on ecosystems; (2) to validate model predictions of total system-level response (including decomposition) against various ecosystem field studies of elevated CO{sub 2} and climate change; (3) to use the ecosystem model to test specific hypotheses and to make predictions about primary, secondary and tertiary effects of elevated CO{sub 2} and climate change on ecosystems for conditions and time frames beyond those used to calibrate the model; and (4) to use the ecosystem model to study effects of change in CO{sub 2} and climate at regional and global scales. Occasionally the author conducted some experimental work that was deemed important to the development of the models. This work was mainly physiological work that could be performed in the Duke University Phytotron, using existing facilities. |
---|