Velocity response of Petermann Glacier, northwest Greenland, to past and future calving events
Dynamic ice discharge from outlet glaciers across the Greenland Ice Sheet has increased since the beginning of the 21st century. Calving from floating ice tongues that buttress these outlets can accelerate ice flow and discharge of grounded ice. However, little is known about the dynamic impact of i...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Coperincus
2018
|
Subjects: | |
Online Access: | https://nrl.northumbria.ac.uk/id/eprint/37704/ https://doi.org/10.5194/tc-12-3907-2018 https://nrl.northumbria.ac.uk/id/eprint/37704/1/tc-12-3907-2018.pdf |
id |
ftunivnorthumb:oai:nrl.northumbria.ac.uk:37704 |
---|---|
record_format |
openpolar |
spelling |
ftunivnorthumb:oai:nrl.northumbria.ac.uk:37704 2023-05-15T13:56:54+02:00 Velocity response of Petermann Glacier, northwest Greenland, to past and future calving events Hill, Emily Gudmundsson, Hilmar Carr, J. Rachel Stokes, Chris 2018-12-18 text https://nrl.northumbria.ac.uk/id/eprint/37704/ https://doi.org/10.5194/tc-12-3907-2018 https://nrl.northumbria.ac.uk/id/eprint/37704/1/tc-12-3907-2018.pdf en eng Coperincus https://nrl.northumbria.ac.uk/id/eprint/37704/1/tc-12-3907-2018.pdf Hill, Emily, Gudmundsson, Hilmar, Carr, J. Rachel and Stokes, Chris (2018) Velocity response of Petermann Glacier, northwest Greenland, to past and future calving events. The Cryosphere, 12 (12). pp. 3907-3921. ISSN 1994-0424 cc_by_4_0 CC-BY F800 Physical and Terrestrial Geographical and Environmental Sciences Article PeerReviewed 2018 ftunivnorthumb https://doi.org/10.5194/tc-12-3907-2018 2022-09-25T06:09:03Z Dynamic ice discharge from outlet glaciers across the Greenland Ice Sheet has increased since the beginning of the 21st century. Calving from floating ice tongues that buttress these outlets can accelerate ice flow and discharge of grounded ice. However, little is known about the dynamic impact of ice tongue loss in Greenland compared to ice shelf collapse in Antarctica. The rapidly flowing (∼1000 m a−1) Petermann Glacier in northwest Greenland has one of the ice sheet's last remaining ice tongues, but it lost ∼50 %–60 % (∼40 km in length) of this tongue via two large calving events in 2010 and 2012. The glacier showed a limited velocity response to these calving events, but it is unclear how sensitive it is to future ice tongue loss. Here, we use an ice flow model (Úa) to assess the instantaneous velocity response of Petermann Glacier to past and future calving events. Our results confirm that the glacier was dynamically insensitive to large calving events in 2010 and 2012 (<10 % annual acceleration). We then simulate the future loss of similarly sized sections to the 2012 calving event (∼8 km long) of the ice tongue back to the grounding line. We conclude that thin, soft sections of the ice tongue >12 km away from the grounding line provide little frontal buttressing, and removing them is unlikely to significantly increase ice velocity or discharge. However, once calving removes ice within 12 km of the grounding line, loss of these thicker and stiffer sections of ice tongue could perturb stresses at the grounding line enough to substantially increase inland flow speeds (∼900 m a−1), grounded ice discharge, and Petermann Glacier's contribution to global sea level rise. Article in Journal/Newspaper Antarc* Antarctica glacier Greenland Ice Sheet Ice Shelf Petermann glacier The Cryosphere Northumbria University, Newcastle: Northumbria Research Link (NRL) Buttress ENVELOPE(-57.083,-57.083,-63.550,-63.550) Greenland The Cryosphere 12 12 3907 3921 |
institution |
Open Polar |
collection |
Northumbria University, Newcastle: Northumbria Research Link (NRL) |
op_collection_id |
ftunivnorthumb |
language |
English |
topic |
F800 Physical and Terrestrial Geographical and Environmental Sciences |
spellingShingle |
F800 Physical and Terrestrial Geographical and Environmental Sciences Hill, Emily Gudmundsson, Hilmar Carr, J. Rachel Stokes, Chris Velocity response of Petermann Glacier, northwest Greenland, to past and future calving events |
topic_facet |
F800 Physical and Terrestrial Geographical and Environmental Sciences |
description |
Dynamic ice discharge from outlet glaciers across the Greenland Ice Sheet has increased since the beginning of the 21st century. Calving from floating ice tongues that buttress these outlets can accelerate ice flow and discharge of grounded ice. However, little is known about the dynamic impact of ice tongue loss in Greenland compared to ice shelf collapse in Antarctica. The rapidly flowing (∼1000 m a−1) Petermann Glacier in northwest Greenland has one of the ice sheet's last remaining ice tongues, but it lost ∼50 %–60 % (∼40 km in length) of this tongue via two large calving events in 2010 and 2012. The glacier showed a limited velocity response to these calving events, but it is unclear how sensitive it is to future ice tongue loss. Here, we use an ice flow model (Úa) to assess the instantaneous velocity response of Petermann Glacier to past and future calving events. Our results confirm that the glacier was dynamically insensitive to large calving events in 2010 and 2012 (<10 % annual acceleration). We then simulate the future loss of similarly sized sections to the 2012 calving event (∼8 km long) of the ice tongue back to the grounding line. We conclude that thin, soft sections of the ice tongue >12 km away from the grounding line provide little frontal buttressing, and removing them is unlikely to significantly increase ice velocity or discharge. However, once calving removes ice within 12 km of the grounding line, loss of these thicker and stiffer sections of ice tongue could perturb stresses at the grounding line enough to substantially increase inland flow speeds (∼900 m a−1), grounded ice discharge, and Petermann Glacier's contribution to global sea level rise. |
format |
Article in Journal/Newspaper |
author |
Hill, Emily Gudmundsson, Hilmar Carr, J. Rachel Stokes, Chris |
author_facet |
Hill, Emily Gudmundsson, Hilmar Carr, J. Rachel Stokes, Chris |
author_sort |
Hill, Emily |
title |
Velocity response of Petermann Glacier, northwest Greenland, to past and future calving events |
title_short |
Velocity response of Petermann Glacier, northwest Greenland, to past and future calving events |
title_full |
Velocity response of Petermann Glacier, northwest Greenland, to past and future calving events |
title_fullStr |
Velocity response of Petermann Glacier, northwest Greenland, to past and future calving events |
title_full_unstemmed |
Velocity response of Petermann Glacier, northwest Greenland, to past and future calving events |
title_sort |
velocity response of petermann glacier, northwest greenland, to past and future calving events |
publisher |
Coperincus |
publishDate |
2018 |
url |
https://nrl.northumbria.ac.uk/id/eprint/37704/ https://doi.org/10.5194/tc-12-3907-2018 https://nrl.northumbria.ac.uk/id/eprint/37704/1/tc-12-3907-2018.pdf |
long_lat |
ENVELOPE(-57.083,-57.083,-63.550,-63.550) |
geographic |
Buttress Greenland |
geographic_facet |
Buttress Greenland |
genre |
Antarc* Antarctica glacier Greenland Ice Sheet Ice Shelf Petermann glacier The Cryosphere |
genre_facet |
Antarc* Antarctica glacier Greenland Ice Sheet Ice Shelf Petermann glacier The Cryosphere |
op_relation |
https://nrl.northumbria.ac.uk/id/eprint/37704/1/tc-12-3907-2018.pdf Hill, Emily, Gudmundsson, Hilmar, Carr, J. Rachel and Stokes, Chris (2018) Velocity response of Petermann Glacier, northwest Greenland, to past and future calving events. The Cryosphere, 12 (12). pp. 3907-3921. ISSN 1994-0424 |
op_rights |
cc_by_4_0 |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.5194/tc-12-3907-2018 |
container_title |
The Cryosphere |
container_volume |
12 |
container_issue |
12 |
container_start_page |
3907 |
op_container_end_page |
3921 |
_version_ |
1766264503802003456 |