Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this st...

Full description

Bibliographic Details
Main Authors: Zona, Donatella, Lafleur, Peter M., Hufkens, Koen, Bailey, Barbara, Gioli, Beniamino, Burba, George, Goodrich, Jordan P., Liljedahl, Anna K., Euskirchen, Eugénie S., Watts, Jennifer D., Farina, Mary, Kimball, John S., Heimann, Martin, Göckede, Mathias, Pallandt, Martijn, Christensen, Torben R., Mastepanov, Mikhail, López-Blanco, Efrén, Jackowicz-Korczynski, Marcin, Dolman, Albertus J., Marchesini, Luca Belelli, Commane, Roisin, Wofsy, Steven C., Miller, Charles E., Lipson, David A., Hashemi, Josh, Arndt, Kyle A., Kutzbach, Lars, Holl, David, Boike, Julia, Wille, Christian, Sachs, Torsten, Kalhori, Aram, Song, Xia
Format: Text
Language:unknown
Published: DigitalCommons@University of Nebraska - Lincoln 2022
Subjects:
Online Access:https://digitalcommons.unl.edu/wffdocs/110
https://digitalcommons.unl.edu/context/wffdocs/article/1104/viewcontent/Zona_SR_2022_Earlier_snowmelt.pdf
id ftunivnebraskali:oai:digitalcommons.unl.edu:wffdocs-1104
record_format openpolar
spelling ftunivnebraskali:oai:digitalcommons.unl.edu:wffdocs-1104 2023-11-12T04:11:09+01:00 Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems Zona, Donatella Lafleur, Peter M. Hufkens, Koen Bailey, Barbara Gioli, Beniamino Burba, George Goodrich, Jordan P. Liljedahl, Anna K. Euskirchen, Eugénie S. Watts, Jennifer D. Farina, Mary Kimball, John S. Heimann, Martin Göckede, Mathias Pallandt, Martijn Christensen, Torben R. Mastepanov, Mikhail López-Blanco, Efrén Jackowicz-Korczynski, Marcin Dolman, Albertus J. Marchesini, Luca Belelli Commane, Roisin Wofsy, Steven C. Miller, Charles E. Lipson, David A. Hashemi, Josh Arndt, Kyle A. Kutzbach, Lars Holl, David Boike, Julia Wille, Christian Sachs, Torsten Kalhori, Aram Song, Xia 2022-12-01T08:00:00Z application/pdf https://digitalcommons.unl.edu/wffdocs/110 https://digitalcommons.unl.edu/context/wffdocs/article/1104/viewcontent/Zona_SR_2022_Earlier_snowmelt.pdf unknown DigitalCommons@University of Nebraska - Lincoln https://digitalcommons.unl.edu/wffdocs/110 https://digitalcommons.unl.edu/context/wffdocs/article/1104/viewcontent/Zona_SR_2022_Earlier_snowmelt.pdf Daugherty Water for Food Global Institute: Faculty Publications Civil and Environmental Engineering Environmental Health and Protection Environmental Monitoring Environmental Sciences Hydraulic Engineering Hydrology Natural Resource Economics Natural Resources and Conservation Natural Resources Management and Policy Sustainability Water Resource Management text 2022 ftunivnebraskali 2023-10-30T10:00:31Z Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season. Text Arctic permafrost Tundra University of Nebraska-Lincoln: DigitalCommons@UNL Arctic
institution Open Polar
collection University of Nebraska-Lincoln: DigitalCommons@UNL
op_collection_id ftunivnebraskali
language unknown
topic Civil and Environmental Engineering
Environmental Health and Protection
Environmental Monitoring
Environmental Sciences
Hydraulic Engineering
Hydrology
Natural Resource Economics
Natural Resources and Conservation
Natural Resources Management and Policy
Sustainability
Water Resource Management
spellingShingle Civil and Environmental Engineering
Environmental Health and Protection
Environmental Monitoring
Environmental Sciences
Hydraulic Engineering
Hydrology
Natural Resource Economics
Natural Resources and Conservation
Natural Resources Management and Policy
Sustainability
Water Resource Management
Zona, Donatella
Lafleur, Peter M.
Hufkens, Koen
Bailey, Barbara
Gioli, Beniamino
Burba, George
Goodrich, Jordan P.
Liljedahl, Anna K.
Euskirchen, Eugénie S.
Watts, Jennifer D.
Farina, Mary
Kimball, John S.
Heimann, Martin
Göckede, Mathias
Pallandt, Martijn
Christensen, Torben R.
Mastepanov, Mikhail
López-Blanco, Efrén
Jackowicz-Korczynski, Marcin
Dolman, Albertus J.
Marchesini, Luca Belelli
Commane, Roisin
Wofsy, Steven C.
Miller, Charles E.
Lipson, David A.
Hashemi, Josh
Arndt, Kyle A.
Kutzbach, Lars
Holl, David
Boike, Julia
Wille, Christian
Sachs, Torsten
Kalhori, Aram
Song, Xia
Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
topic_facet Civil and Environmental Engineering
Environmental Health and Protection
Environmental Monitoring
Environmental Sciences
Hydraulic Engineering
Hydrology
Natural Resource Economics
Natural Resources and Conservation
Natural Resources Management and Policy
Sustainability
Water Resource Management
description Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.
format Text
author Zona, Donatella
Lafleur, Peter M.
Hufkens, Koen
Bailey, Barbara
Gioli, Beniamino
Burba, George
Goodrich, Jordan P.
Liljedahl, Anna K.
Euskirchen, Eugénie S.
Watts, Jennifer D.
Farina, Mary
Kimball, John S.
Heimann, Martin
Göckede, Mathias
Pallandt, Martijn
Christensen, Torben R.
Mastepanov, Mikhail
López-Blanco, Efrén
Jackowicz-Korczynski, Marcin
Dolman, Albertus J.
Marchesini, Luca Belelli
Commane, Roisin
Wofsy, Steven C.
Miller, Charles E.
Lipson, David A.
Hashemi, Josh
Arndt, Kyle A.
Kutzbach, Lars
Holl, David
Boike, Julia
Wille, Christian
Sachs, Torsten
Kalhori, Aram
Song, Xia
author_facet Zona, Donatella
Lafleur, Peter M.
Hufkens, Koen
Bailey, Barbara
Gioli, Beniamino
Burba, George
Goodrich, Jordan P.
Liljedahl, Anna K.
Euskirchen, Eugénie S.
Watts, Jennifer D.
Farina, Mary
Kimball, John S.
Heimann, Martin
Göckede, Mathias
Pallandt, Martijn
Christensen, Torben R.
Mastepanov, Mikhail
López-Blanco, Efrén
Jackowicz-Korczynski, Marcin
Dolman, Albertus J.
Marchesini, Luca Belelli
Commane, Roisin
Wofsy, Steven C.
Miller, Charles E.
Lipson, David A.
Hashemi, Josh
Arndt, Kyle A.
Kutzbach, Lars
Holl, David
Boike, Julia
Wille, Christian
Sachs, Torsten
Kalhori, Aram
Song, Xia
author_sort Zona, Donatella
title Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
title_short Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
title_full Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
title_fullStr Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
title_full_unstemmed Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
title_sort earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in arctic tundra ecosystems
publisher DigitalCommons@University of Nebraska - Lincoln
publishDate 2022
url https://digitalcommons.unl.edu/wffdocs/110
https://digitalcommons.unl.edu/context/wffdocs/article/1104/viewcontent/Zona_SR_2022_Earlier_snowmelt.pdf
geographic Arctic
geographic_facet Arctic
genre Arctic
permafrost
Tundra
genre_facet Arctic
permafrost
Tundra
op_source Daugherty Water for Food Global Institute: Faculty Publications
op_relation https://digitalcommons.unl.edu/wffdocs/110
https://digitalcommons.unl.edu/context/wffdocs/article/1104/viewcontent/Zona_SR_2022_Earlier_snowmelt.pdf
_version_ 1782330338668707840