Nuclear quantum effects in hydrated nanocrystals

The quantum nature of nuclei yields unexpected and often paradoxical behaviors. Due to the lightness of its nucleus, the hydrogen is a most likely candidate for such effects. During this thesis, we focus on complexe hydrated systems, namely, the brucite minerals (Mg(OH)2), the methane hydrate (CH4-H...

Full description

Bibliographic Details
Main Author: Schaack, Sofiane
Other Authors: Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Philippe Depondt, Fabio Finocchi
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://theses.hal.science/tel-03008642
https://theses.hal.science/tel-03008642/document
https://theses.hal.science/tel-03008642/file/SCHAACK_Sofiane_2019.pdf
id ftunivnantes:oai:HAL:tel-03008642v1
record_format openpolar
spelling ftunivnantes:oai:HAL:tel-03008642v1 2023-05-15T17:11:51+02:00 Nuclear quantum effects in hydrated nanocrystals Effets quantiques nucléaires dans les nanocristaux hydratés Schaack, Sofiane Institut des Nanosciences de Paris (INSP) Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) Sorbonne Université Philippe Depondt Fabio Finocchi 2019-09-25 https://theses.hal.science/tel-03008642 https://theses.hal.science/tel-03008642/document https://theses.hal.science/tel-03008642/file/SCHAACK_Sofiane_2019.pdf en eng HAL CCSD NNT: 2019SORUS370 tel-03008642 https://theses.hal.science/tel-03008642 https://theses.hal.science/tel-03008642/document https://theses.hal.science/tel-03008642/file/SCHAACK_Sofiane_2019.pdf info:eu-repo/semantics/OpenAccess https://theses.hal.science/tel-03008642 Quantum Physics [quant-ph]. Sorbonne Université, 2019. English. ⟨NNT : 2019SORUS370⟩ Nuclear quantum effects Path integrals Hydrated systems Effets quantiques nucléaires Simulations ab-initio Intégrales de chemin Brucite Clathrate de méthane Soude [PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] info:eu-repo/semantics/doctoralThesis Theses 2019 ftunivnantes 2023-01-18T00:33:39Z The quantum nature of nuclei yields unexpected and often paradoxical behaviors. Due to the lightness of its nucleus, the hydrogen is a most likely candidate for such effects. During this thesis, we focus on complexe hydrated systems, namely, the brucite minerals (Mg(OH)2), the methane hydrate (CH4-H2O) and the sodium hydroxide (NaOH), which display complex mechanisms driven by the proton quantum properties. Brucite exhibits the coexistence of thermally activated hopping and quantum tunneling with opposite behaviors as pressure is increased. The unforeseen consequence is a pressure sweet spot for proton diffusion. Simultaneously, pressure gives rise to a «quantum» quasi two-dimensional hydrogen plane, non-trivially connected with proton diffusion. Upon compression, methane hydrate displays an important increase of the inter-molecular interactions between water and enclosed methane molecules. In contrast with ice, the hydrogen bond transition does not shift by H/D isotopic substitution. This is explained by an important delocalization of the proton which also triggers a transition toward a new MH-IV methane hydrate phase, stable up to 150 GPa which represents the highest pressure reached to date by any hydrate. Sodium hydroxide has a phase transition below room temperature at ambient pressure only in its deuterated version. This radical isotope effect can be explained by the quantum delocalization of the proton as compared with deuteron shifting the temperature-induced phase transition of NaOD towards a pressure-induced one in NaOH. La nature quantique des noyaux produit des comportements inattendus et souvent paradoxaux. Du fait de sa légèreté, l'hydrogène est le candidat le plus susceptible de présenter de tels comportements. Nous avons étudié trois systèmes hydratés dont les mécanismes sont déterminés par les propriétés quantiques des protons (NQEs) : la Brucite (Mg(OH)2), l'hydrate de méthane (CH4-H2O) et l'hydroxyde de sodium (NaOH). Au sein des Brucites coexistent deux effets en compétition : un mécanisme ... Doctoral or Postdoctoral Thesis Methane hydrate Université de Nantes: HAL-UNIV-NANTES
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic Nuclear quantum effects
Path integrals
Hydrated systems
Effets quantiques nucléaires
Simulations ab-initio
Intégrales de chemin
Brucite
Clathrate de méthane
Soude
[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]
spellingShingle Nuclear quantum effects
Path integrals
Hydrated systems
Effets quantiques nucléaires
Simulations ab-initio
Intégrales de chemin
Brucite
Clathrate de méthane
Soude
[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]
Schaack, Sofiane
Nuclear quantum effects in hydrated nanocrystals
topic_facet Nuclear quantum effects
Path integrals
Hydrated systems
Effets quantiques nucléaires
Simulations ab-initio
Intégrales de chemin
Brucite
Clathrate de méthane
Soude
[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]
description The quantum nature of nuclei yields unexpected and often paradoxical behaviors. Due to the lightness of its nucleus, the hydrogen is a most likely candidate for such effects. During this thesis, we focus on complexe hydrated systems, namely, the brucite minerals (Mg(OH)2), the methane hydrate (CH4-H2O) and the sodium hydroxide (NaOH), which display complex mechanisms driven by the proton quantum properties. Brucite exhibits the coexistence of thermally activated hopping and quantum tunneling with opposite behaviors as pressure is increased. The unforeseen consequence is a pressure sweet spot for proton diffusion. Simultaneously, pressure gives rise to a «quantum» quasi two-dimensional hydrogen plane, non-trivially connected with proton diffusion. Upon compression, methane hydrate displays an important increase of the inter-molecular interactions between water and enclosed methane molecules. In contrast with ice, the hydrogen bond transition does not shift by H/D isotopic substitution. This is explained by an important delocalization of the proton which also triggers a transition toward a new MH-IV methane hydrate phase, stable up to 150 GPa which represents the highest pressure reached to date by any hydrate. Sodium hydroxide has a phase transition below room temperature at ambient pressure only in its deuterated version. This radical isotope effect can be explained by the quantum delocalization of the proton as compared with deuteron shifting the temperature-induced phase transition of NaOD towards a pressure-induced one in NaOH. La nature quantique des noyaux produit des comportements inattendus et souvent paradoxaux. Du fait de sa légèreté, l'hydrogène est le candidat le plus susceptible de présenter de tels comportements. Nous avons étudié trois systèmes hydratés dont les mécanismes sont déterminés par les propriétés quantiques des protons (NQEs) : la Brucite (Mg(OH)2), l'hydrate de méthane (CH4-H2O) et l'hydroxyde de sodium (NaOH). Au sein des Brucites coexistent deux effets en compétition : un mécanisme ...
author2 Institut des Nanosciences de Paris (INSP)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Sorbonne Université
Philippe Depondt
Fabio Finocchi
format Doctoral or Postdoctoral Thesis
author Schaack, Sofiane
author_facet Schaack, Sofiane
author_sort Schaack, Sofiane
title Nuclear quantum effects in hydrated nanocrystals
title_short Nuclear quantum effects in hydrated nanocrystals
title_full Nuclear quantum effects in hydrated nanocrystals
title_fullStr Nuclear quantum effects in hydrated nanocrystals
title_full_unstemmed Nuclear quantum effects in hydrated nanocrystals
title_sort nuclear quantum effects in hydrated nanocrystals
publisher HAL CCSD
publishDate 2019
url https://theses.hal.science/tel-03008642
https://theses.hal.science/tel-03008642/document
https://theses.hal.science/tel-03008642/file/SCHAACK_Sofiane_2019.pdf
genre Methane hydrate
genre_facet Methane hydrate
op_source https://theses.hal.science/tel-03008642
Quantum Physics [quant-ph]. Sorbonne Université, 2019. English. ⟨NNT : 2019SORUS370⟩
op_relation NNT: 2019SORUS370
tel-03008642
https://theses.hal.science/tel-03008642
https://theses.hal.science/tel-03008642/document
https://theses.hal.science/tel-03008642/file/SCHAACK_Sofiane_2019.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1766068607369871360