Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation

Methane hydrate is a non-stoichiometric crystal in which water molecules form hydrogen-bonded cages that entrap methane molecules. Abundant methane hydrate resources can be found on Earth, especially trapped in mineral porous rocks (e.g., clay, permafrost, seafloor, etc.). For this reason, understan...

Full description

Bibliographic Details
Main Author: Jin, Dongliang
Other Authors: Laboratoire Interdisciplinaire de Physique Saint Martin d’Hères (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Université Grenoble Alpes, Benoît Coasne
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: HAL CCSD 2018
Subjects:
Online Access:https://theses.hal.science/tel-02181782
https://theses.hal.science/tel-02181782/document
https://theses.hal.science/tel-02181782/file/JIN_2018_diffusion.pdf
id ftunivnantes:oai:HAL:tel-02181782v1
record_format openpolar
spelling ftunivnantes:oai:HAL:tel-02181782v1 2023-05-15T17:11:10+02:00 Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation Thermodynamique et cinétique de la formation de l'hydrate de méthane confiné dans un milieu nanoporeux : théorie et simulation moléculaire Jin, Dongliang Laboratoire Interdisciplinaire de Physique Saint Martin d’Hères (LIPhy) Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Université Grenoble Alpes Benoît Coasne 2018-12-10 https://theses.hal.science/tel-02181782 https://theses.hal.science/tel-02181782/document https://theses.hal.science/tel-02181782/file/JIN_2018_diffusion.pdf en eng HAL CCSD NNT: 2018GREAY076 tel-02181782 https://theses.hal.science/tel-02181782 https://theses.hal.science/tel-02181782/document https://theses.hal.science/tel-02181782/file/JIN_2018_diffusion.pdf info:eu-repo/semantics/OpenAccess https://theses.hal.science/tel-02181782 Other [cond-mat.other]. Université Grenoble Alpes, 2018. English. ⟨NNT : 2018GREAY076⟩ Molecular Modeling Nanoporous Media Clathrate hydrates and energy Nanoconfinement and surface forces Modélisation Moléculaire Milieux Nanoporeux Clathrates et Energie Nanoconfinement et forces de surface [PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] info:eu-repo/semantics/doctoralThesis Theses 2018 ftunivnantes 2023-03-08T05:25:13Z Methane hydrate is a non-stoichiometric crystal in which water molecules form hydrogen-bonded cages that entrap methane molecules. Abundant methane hydrate resources can be found on Earth, especially trapped in mineral porous rocks (e.g., clay, permafrost, seafloor, etc.). For this reason, understanding the thermodynamics and formation kinetics of methane hydrate confined in porous media is receiving a great deal of attention. In this thesis, we combine computer modeling and theoretical approaches to determine the thermodynamics and formation kinetics of methane hydrate confined in porous media. First, the state-of-the-art on the thermodynamics and formation kinetics of methane hydrate is presented. Second, different molecular simulation strategies, including free energy calculations using the Einstein molecule approach, the direct coexistence method, and the hyperparallel tempering technique, are used to assess the phase stability of bulk methane hydrate at various temperatures and pressures. Third, among these strategies, the direct coexistence method is chosen to determine the shift in melting point upon confinement in pores, ∆Tm=Tm^{pore}-Tm^{bulk} where Tm^{pore} and Tm^{bulk} are the melting temperatures of bulk and confined methane hydrate. We found that confinement decreases the melting temperature, Tm^{pore}≺Tm^{bulk}. The shift in melting temperature using the direct coexistence method is consistent with the Gibbs-Thompson equation which predicts that the shift in melting temperature linearly depends on the reciprocal of pore width, i.e., ∆Tm/Tm^{bulk}∼k{GB}/Dp. The quantitative validity of this classical thermodynamic equation to describe such confinement and surface effects is also addressed. The surface tensions of methane hydrate-substrate and liquid water-substrate interfaces are determined using molecular dynamics to quantitatively validate the Gibbs-Thompson equation. Molecular dynamics simulations are also performed to determine important thermodynamic properties of bulk and confined methane ... Doctoral or Postdoctoral Thesis Methane hydrate permafrost Université de Nantes: HAL-UNIV-NANTES
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic Molecular Modeling
Nanoporous Media
Clathrate hydrates and energy
Nanoconfinement and surface forces
Modélisation Moléculaire
Milieux Nanoporeux
Clathrates et Energie
Nanoconfinement et forces de surface
[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]
spellingShingle Molecular Modeling
Nanoporous Media
Clathrate hydrates and energy
Nanoconfinement and surface forces
Modélisation Moléculaire
Milieux Nanoporeux
Clathrates et Energie
Nanoconfinement et forces de surface
[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]
Jin, Dongliang
Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation
topic_facet Molecular Modeling
Nanoporous Media
Clathrate hydrates and energy
Nanoconfinement and surface forces
Modélisation Moléculaire
Milieux Nanoporeux
Clathrates et Energie
Nanoconfinement et forces de surface
[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]
description Methane hydrate is a non-stoichiometric crystal in which water molecules form hydrogen-bonded cages that entrap methane molecules. Abundant methane hydrate resources can be found on Earth, especially trapped in mineral porous rocks (e.g., clay, permafrost, seafloor, etc.). For this reason, understanding the thermodynamics and formation kinetics of methane hydrate confined in porous media is receiving a great deal of attention. In this thesis, we combine computer modeling and theoretical approaches to determine the thermodynamics and formation kinetics of methane hydrate confined in porous media. First, the state-of-the-art on the thermodynamics and formation kinetics of methane hydrate is presented. Second, different molecular simulation strategies, including free energy calculations using the Einstein molecule approach, the direct coexistence method, and the hyperparallel tempering technique, are used to assess the phase stability of bulk methane hydrate at various temperatures and pressures. Third, among these strategies, the direct coexistence method is chosen to determine the shift in melting point upon confinement in pores, ∆Tm=Tm^{pore}-Tm^{bulk} where Tm^{pore} and Tm^{bulk} are the melting temperatures of bulk and confined methane hydrate. We found that confinement decreases the melting temperature, Tm^{pore}≺Tm^{bulk}. The shift in melting temperature using the direct coexistence method is consistent with the Gibbs-Thompson equation which predicts that the shift in melting temperature linearly depends on the reciprocal of pore width, i.e., ∆Tm/Tm^{bulk}∼k{GB}/Dp. The quantitative validity of this classical thermodynamic equation to describe such confinement and surface effects is also addressed. The surface tensions of methane hydrate-substrate and liquid water-substrate interfaces are determined using molecular dynamics to quantitatively validate the Gibbs-Thompson equation. Molecular dynamics simulations are also performed to determine important thermodynamic properties of bulk and confined methane ...
author2 Laboratoire Interdisciplinaire de Physique Saint Martin d’Hères (LIPhy)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Université Grenoble Alpes
Benoît Coasne
format Doctoral or Postdoctoral Thesis
author Jin, Dongliang
author_facet Jin, Dongliang
author_sort Jin, Dongliang
title Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation
title_short Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation
title_full Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation
title_fullStr Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation
title_full_unstemmed Thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation
title_sort thermodynamics and kinetics of methane hydrate formation in nanoporous media : theory and molecular simulation
publisher HAL CCSD
publishDate 2018
url https://theses.hal.science/tel-02181782
https://theses.hal.science/tel-02181782/document
https://theses.hal.science/tel-02181782/file/JIN_2018_diffusion.pdf
genre Methane hydrate
permafrost
genre_facet Methane hydrate
permafrost
op_source https://theses.hal.science/tel-02181782
Other [cond-mat.other]. Université Grenoble Alpes, 2018. English. ⟨NNT : 2018GREAY076⟩
op_relation NNT: 2018GREAY076
tel-02181782
https://theses.hal.science/tel-02181782
https://theses.hal.science/tel-02181782/document
https://theses.hal.science/tel-02181782/file/JIN_2018_diffusion.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1766067995264679936