A Maxwell-Elasto-Brittle model for the drift and deformation of sea ice

In recent years, analyses of available ice buoy and satellite data have revealed the strong heterogeneity and intermittency of the deformation of sea ice and have demonstrated that the viscous-plastic rheology widely used in current climate models and operational modelling platforms does not simulat...

Full description

Bibliographic Details
Main Author: Dansereau, Véronique
Other Authors: Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Université Grenoble Alpes, Jérôme Weiss, Pierre Saramito
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://theses.hal.science/tel-01316987
https://theses.hal.science/tel-01316987/document
https://theses.hal.science/tel-01316987/file/DANSEREAU_2016_archivage.pdf
id ftunivnantes:oai:HAL:tel-01316987v1
record_format openpolar
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic Sea ice deformation
Maxwell-Elasto-Brittle rheology
Brittle mechanics
Elastic interactions
Viscous stress relaxation
Discontinuous Galerkin methods
Déformation de la banquise
Rhéologie Maxwell-Élasto-Fragile
Mécanique élasto-Fragile
Intéractions élastiques
Relaxation visqueuse
Méthodes Garlerkin discontinues
[PHYS.MECA]Physics [physics]/Mechanics [physics]
[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph]
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
spellingShingle Sea ice deformation
Maxwell-Elasto-Brittle rheology
Brittle mechanics
Elastic interactions
Viscous stress relaxation
Discontinuous Galerkin methods
Déformation de la banquise
Rhéologie Maxwell-Élasto-Fragile
Mécanique élasto-Fragile
Intéractions élastiques
Relaxation visqueuse
Méthodes Garlerkin discontinues
[PHYS.MECA]Physics [physics]/Mechanics [physics]
[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph]
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
Dansereau, Véronique
A Maxwell-Elasto-Brittle model for the drift and deformation of sea ice
topic_facet Sea ice deformation
Maxwell-Elasto-Brittle rheology
Brittle mechanics
Elastic interactions
Viscous stress relaxation
Discontinuous Galerkin methods
Déformation de la banquise
Rhéologie Maxwell-Élasto-Fragile
Mécanique élasto-Fragile
Intéractions élastiques
Relaxation visqueuse
Méthodes Garlerkin discontinues
[PHYS.MECA]Physics [physics]/Mechanics [physics]
[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph]
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
description In recent years, analyses of available ice buoy and satellite data have revealed the strong heterogeneity and intermittency of the deformation of sea ice and have demonstrated that the viscous-plastic rheology widely used in current climate models and operational modelling platforms does not simulate adequately the drift, deformation and mechanical stresses within the ice pack.A new alternative rheological framework named ''Maxwell-Elasto-Brittle” (Maxwell-EB) is therefore developed in the view of reproducing more accurately the drift and deformation of the ice cover in continuum sea ice models at regional to global scales. The model builds on an elasto-brittle framework used for ice and rocks. A viscous-like relaxation term is added to a linear-elastic constitutive relationship together with an effective viscosity that evolves with the local level of damage of the material, like its elastic modulus. This framework allows for part of the internal stress to dissipate in large, permanent deformations along the faults/leads once the material is highly damaged while retaining the memory of small, elastic deformations over undamaged areas. A healing mechanism is also introduced, counterbalancing the effects of damaging over large time scales.The numerical scheme for the Maxwell-EB model is based on finite elements and variational methods. The equations of motion are cast in the Eulerian frame and discontinuous Galerkin methods are implemented to handle advective processes.Idealized simulations without advection are first presented. These demonstrate that the Maxwell-EB rheological framework reproduces the main characteristics of sea ice mechanics and deformation : the strain localization, the anisotropy and intermittency of deformation and the associated scaling laws. The successful representation of these properties translates into very large gradients within all simulated fields. Idealized numerical experiments are conducted to evaluate the amount of numerical diffusion associated with the advection of these ...
author2 Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Université Grenoble Alpes
Jérôme Weiss
Pierre Saramito
format Doctoral or Postdoctoral Thesis
author Dansereau, Véronique
author_facet Dansereau, Véronique
author_sort Dansereau, Véronique
title A Maxwell-Elasto-Brittle model for the drift and deformation of sea ice
title_short A Maxwell-Elasto-Brittle model for the drift and deformation of sea ice
title_full A Maxwell-Elasto-Brittle model for the drift and deformation of sea ice
title_fullStr A Maxwell-Elasto-Brittle model for the drift and deformation of sea ice
title_full_unstemmed A Maxwell-Elasto-Brittle model for the drift and deformation of sea ice
title_sort maxwell-elasto-brittle model for the drift and deformation of sea ice
publisher HAL CCSD
publishDate 2016
url https://theses.hal.science/tel-01316987
https://theses.hal.science/tel-01316987/document
https://theses.hal.science/tel-01316987/file/DANSEREAU_2016_archivage.pdf
genre banquise
Sea ice
genre_facet banquise
Sea ice
op_source https://theses.hal.science/tel-01316987
Mechanics [physics]. Université Grenoble Alpes, 2016. English. ⟨NNT : 2016GREAU003⟩
op_relation NNT: 2016GREAU003
tel-01316987
https://theses.hal.science/tel-01316987
https://theses.hal.science/tel-01316987/document
https://theses.hal.science/tel-01316987/file/DANSEREAU_2016_archivage.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1766368369949278208
spelling ftunivnantes:oai:HAL:tel-01316987v1 2023-05-15T15:37:42+02:00 A Maxwell-Elasto-Brittle model for the drift and deformation of sea ice Un modèle Maxwell-élasto-fragile pour la déformation et dérive de la banquise Dansereau, Véronique Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Université Grenoble Alpes Jérôme Weiss Pierre Saramito 2016-02-17 https://theses.hal.science/tel-01316987 https://theses.hal.science/tel-01316987/document https://theses.hal.science/tel-01316987/file/DANSEREAU_2016_archivage.pdf en eng HAL CCSD NNT: 2016GREAU003 tel-01316987 https://theses.hal.science/tel-01316987 https://theses.hal.science/tel-01316987/document https://theses.hal.science/tel-01316987/file/DANSEREAU_2016_archivage.pdf info:eu-repo/semantics/OpenAccess https://theses.hal.science/tel-01316987 Mechanics [physics]. Université Grenoble Alpes, 2016. English. ⟨NNT : 2016GREAU003⟩ Sea ice deformation Maxwell-Elasto-Brittle rheology Brittle mechanics Elastic interactions Viscous stress relaxation Discontinuous Galerkin methods Déformation de la banquise Rhéologie Maxwell-Élasto-Fragile Mécanique élasto-Fragile Intéractions élastiques Relaxation visqueuse Méthodes Garlerkin discontinues [PHYS.MECA]Physics [physics]/Mechanics [physics] [PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph] [SDU.STU]Sciences of the Universe [physics]/Earth Sciences [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology info:eu-repo/semantics/doctoralThesis Theses 2016 ftunivnantes 2023-03-08T07:08:57Z In recent years, analyses of available ice buoy and satellite data have revealed the strong heterogeneity and intermittency of the deformation of sea ice and have demonstrated that the viscous-plastic rheology widely used in current climate models and operational modelling platforms does not simulate adequately the drift, deformation and mechanical stresses within the ice pack.A new alternative rheological framework named ''Maxwell-Elasto-Brittle” (Maxwell-EB) is therefore developed in the view of reproducing more accurately the drift and deformation of the ice cover in continuum sea ice models at regional to global scales. The model builds on an elasto-brittle framework used for ice and rocks. A viscous-like relaxation term is added to a linear-elastic constitutive relationship together with an effective viscosity that evolves with the local level of damage of the material, like its elastic modulus. This framework allows for part of the internal stress to dissipate in large, permanent deformations along the faults/leads once the material is highly damaged while retaining the memory of small, elastic deformations over undamaged areas. A healing mechanism is also introduced, counterbalancing the effects of damaging over large time scales.The numerical scheme for the Maxwell-EB model is based on finite elements and variational methods. The equations of motion are cast in the Eulerian frame and discontinuous Galerkin methods are implemented to handle advective processes.Idealized simulations without advection are first presented. These demonstrate that the Maxwell-EB rheological framework reproduces the main characteristics of sea ice mechanics and deformation : the strain localization, the anisotropy and intermittency of deformation and the associated scaling laws. The successful representation of these properties translates into very large gradients within all simulated fields. Idealized numerical experiments are conducted to evaluate the amount of numerical diffusion associated with the advection of these ... Doctoral or Postdoctoral Thesis banquise Sea ice Université de Nantes: HAL-UNIV-NANTES