Monitoring and modelling of the mass balance of the Cook Ice Cap, Kerguelen Islands - link with climate change
Glaciers of the southern hemisphere sub-polar regions between 45 and 60°S have declined dramatically over the last century. The islands of Kerguelen archipelago (49°S, 69°E) represent a unique location in regions where few data are available to understand glacier retreat. Situated at low altitudes a...
Main Author: | |
---|---|
Other Authors: | , , , , , |
Format: | Doctoral or Postdoctoral Thesis |
Language: | French |
Published: |
HAL CCSD
2014
|
Subjects: | |
Online Access: | https://theses.hal.science/tel-01230616 https://theses.hal.science/tel-01230616/document https://theses.hal.science/tel-01230616/file/VERFAILLIE_2014_archivage.pdf |
Summary: | Glaciers of the southern hemisphere sub-polar regions between 45 and 60°S have declined dramatically over the last century. The islands of Kerguelen archipelago (49°S, 69°E) represent a unique location in regions where few data are available to understand glacier retreat. Situated at low altitudes and close to the ocean, their glaciers have shown particular sensitivity to atmospheric and oceanic variations. Thus, since the 1960s, the Cook Ice Cap (~400km2) has retreated spectacularly, losing 20% of its area in 40 years. The aim of my thesis was to assess the present and future state of the ice cap, and to understand the causes of this decline while putting them in a global context. To do so, a meteorological and glaciological network was set up in 2010 on Kerguelen archipelago and field campaigns have been carried out annually since then. Analysis of these measurements confirms the negative mass balance of Cook Ice Cap. In parallel, the study of the albedo over the whole ice cap from MODIS satellite images (MODerate resolution Imaging Spectroradiometer) gives us access to the evolution of the snow line since 2000, highlighting an important reduction of Cook Ice Cap accumulation area over the last decade. Mass balance modelling of the Cook Ice Cap using a degree-day model coupled to a simple ice motion routine further reveals that its retreat is mainly due to a strong decrease in precipitation over the Kerguelen Islands since the 1960s. In order to put the decline of the cryosphere on Kerguelen in a global context, climatic trends over the whole sub-polar regions are studied, revealing that the sub-Antarctic area is currently the one where glacier retreat is the strongest. To understand these variations, we analyse a complete set of field and satellite observations and modelling results : reanalyses, models from the CMIP5 (Coupled Model Intercomparison Project phase 5) experiment, atmospheric and oceanic temperature and precipitation observations, etc. The latter show warming and quasigeneralised drying of the ... |
---|