Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021)

International audience Melt on the surface of Antarctic ice shelves can potentially lead to their disintegration, accelerating the flow of grounded ice to the ocean and raising global sea levels. However, the current understanding of the processes driving surface melt is incomplete, increasing uncer...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Saunderson, Dominic, Mackintosh, Andrew, Mccormack, Felicity, Selwyn Jones, Richard, Picard, Ghislain
Other Authors: Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://hal-insu.archives-ouvertes.fr/insu-03859252
https://hal-insu.archives-ouvertes.fr/insu-03859252/document
https://hal-insu.archives-ouvertes.fr/insu-03859252/file/tc-16-4553-2022.pdf
https://doi.org/10.5194/tc-16-4553-2022
id ftunivnantes:oai:HAL:insu-03859252v1
record_format openpolar
spelling ftunivnantes:oai:HAL:insu-03859252v1 2023-05-15T13:42:17+02:00 Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021) Saunderson, Dominic Mackintosh, Andrew Mccormack, Felicity Selwyn Jones, Richard Picard, Ghislain Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) 2022 https://hal-insu.archives-ouvertes.fr/insu-03859252 https://hal-insu.archives-ouvertes.fr/insu-03859252/document https://hal-insu.archives-ouvertes.fr/insu-03859252/file/tc-16-4553-2022.pdf https://doi.org/10.5194/tc-16-4553-2022 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-16-4553-2022 insu-03859252 https://hal-insu.archives-ouvertes.fr/insu-03859252 https://hal-insu.archives-ouvertes.fr/insu-03859252/document https://hal-insu.archives-ouvertes.fr/insu-03859252/file/tc-16-4553-2022.pdf BIBCODE: 2022TCry.16.4553S doi:10.5194/tc-16-4553-2022 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal-insu.archives-ouvertes.fr/insu-03859252 The Cryosphere, 2022, 16, pp.4553-4569. ⟨10.5194/tc-16-4553-2022⟩ [SDU]Sciences of the Universe [physics] [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography info:eu-repo/semantics/article Journal articles 2022 ftunivnantes https://doi.org/10.5194/tc-16-4553-2022 2023-03-01T01:18:21Z International audience Melt on the surface of Antarctic ice shelves can potentially lead to their disintegration, accelerating the flow of grounded ice to the ocean and raising global sea levels. However, the current understanding of the processes driving surface melt is incomplete, increasing uncertainty in predictions of ice shelf stability and thus of Antarctica's contribution to sea-level rise. Previous studies of surface melt in Antarctica have usually focused on either a process-level understanding of melt through energy-balance investigations or used metrics such as the annual number of melt days to quantify spatiotemporal variability in satellite observations of surface melt. Here, we help bridge the gap between work at these two scales. Using daily passive microwave observations from the AMSR-E and AMSR-2 sensors and the machine learning approach of a self-organising map, we identify nine representative spatial distributions ("patterns") of surface melt on the Shackleton Ice Shelf in East Antarctica from 2002/03-2020/21. Combined with output from the RACMO2.3p3 regional climate model and surface topography from the REMA digital elevation model, our results point to a significant role for surface air temperatures in controlling the interannual variability in summer melt and also reveal the influence of localised controls on melt. In particular, prolonged melt along the grounding line shows the importance of katabatic winds and surface albedo. Our approach highlights the necessity of understanding both local and large-scale controls on surface melt and demonstrates that self-organising maps can be used to investigate the variability in surface melt on Antarctic ice shelves. Article in Journal/Newspaper Antarc* Antarctic Antarctica East Antarctica Ice Shelf Ice Shelves Shackleton Ice Shelf The Cryosphere Université de Nantes: HAL-UNIV-NANTES Antarctic East Antarctica Shackleton Shackleton Ice Shelf ENVELOPE(100.504,100.504,-65.996,-65.996) The Cryosphere 16 10 4553 4569
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic [SDU]Sciences of the Universe [physics]
[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
spellingShingle [SDU]Sciences of the Universe [physics]
[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
Saunderson, Dominic
Mackintosh, Andrew
Mccormack, Felicity
Selwyn Jones, Richard
Picard, Ghislain
Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021)
topic_facet [SDU]Sciences of the Universe [physics]
[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
description International audience Melt on the surface of Antarctic ice shelves can potentially lead to their disintegration, accelerating the flow of grounded ice to the ocean and raising global sea levels. However, the current understanding of the processes driving surface melt is incomplete, increasing uncertainty in predictions of ice shelf stability and thus of Antarctica's contribution to sea-level rise. Previous studies of surface melt in Antarctica have usually focused on either a process-level understanding of melt through energy-balance investigations or used metrics such as the annual number of melt days to quantify spatiotemporal variability in satellite observations of surface melt. Here, we help bridge the gap between work at these two scales. Using daily passive microwave observations from the AMSR-E and AMSR-2 sensors and the machine learning approach of a self-organising map, we identify nine representative spatial distributions ("patterns") of surface melt on the Shackleton Ice Shelf in East Antarctica from 2002/03-2020/21. Combined with output from the RACMO2.3p3 regional climate model and surface topography from the REMA digital elevation model, our results point to a significant role for surface air temperatures in controlling the interannual variability in summer melt and also reveal the influence of localised controls on melt. In particular, prolonged melt along the grounding line shows the importance of katabatic winds and surface albedo. Our approach highlights the necessity of understanding both local and large-scale controls on surface melt and demonstrates that self-organising maps can be used to investigate the variability in surface melt on Antarctic ice shelves.
author2 Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
format Article in Journal/Newspaper
author Saunderson, Dominic
Mackintosh, Andrew
Mccormack, Felicity
Selwyn Jones, Richard
Picard, Ghislain
author_facet Saunderson, Dominic
Mackintosh, Andrew
Mccormack, Felicity
Selwyn Jones, Richard
Picard, Ghislain
author_sort Saunderson, Dominic
title Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021)
title_short Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021)
title_full Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021)
title_fullStr Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021)
title_full_unstemmed Surface melt on the Shackleton Ice Shelf, East Antarctica (2003-2021)
title_sort surface melt on the shackleton ice shelf, east antarctica (2003-2021)
publisher HAL CCSD
publishDate 2022
url https://hal-insu.archives-ouvertes.fr/insu-03859252
https://hal-insu.archives-ouvertes.fr/insu-03859252/document
https://hal-insu.archives-ouvertes.fr/insu-03859252/file/tc-16-4553-2022.pdf
https://doi.org/10.5194/tc-16-4553-2022
long_lat ENVELOPE(100.504,100.504,-65.996,-65.996)
geographic Antarctic
East Antarctica
Shackleton
Shackleton Ice Shelf
geographic_facet Antarctic
East Antarctica
Shackleton
Shackleton Ice Shelf
genre Antarc*
Antarctic
Antarctica
East Antarctica
Ice Shelf
Ice Shelves
Shackleton Ice Shelf
The Cryosphere
genre_facet Antarc*
Antarctic
Antarctica
East Antarctica
Ice Shelf
Ice Shelves
Shackleton Ice Shelf
The Cryosphere
op_source ISSN: 1994-0424
EISSN: 1994-0416
The Cryosphere
https://hal-insu.archives-ouvertes.fr/insu-03859252
The Cryosphere, 2022, 16, pp.4553-4569. ⟨10.5194/tc-16-4553-2022⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-16-4553-2022
insu-03859252
https://hal-insu.archives-ouvertes.fr/insu-03859252
https://hal-insu.archives-ouvertes.fr/insu-03859252/document
https://hal-insu.archives-ouvertes.fr/insu-03859252/file/tc-16-4553-2022.pdf
BIBCODE: 2022TCry.16.4553S
doi:10.5194/tc-16-4553-2022
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/tc-16-4553-2022
container_title The Cryosphere
container_volume 16
container_issue 10
container_start_page 4553
op_container_end_page 4569
_version_ 1766166030865924096