Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum

International audience At the Last Glacial Maximum (LGM), the Rhine glacier in the Swiss Alps covered an area of about 16 000 km 2 . As part of an integrative study about the safety of repositories for radioactive waste under ice age conditions in Switzerland, we modeled the Rhine glacier using a th...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Cohen, Denis, Gillet-Chaulet, Fabien, Haeberli, Wilfried, Machguth, Horst, Fischer, Urs H.
Other Authors: Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2018
Subjects:
Online Access:https://hal-insu.archives-ouvertes.fr/insu-03706501
https://hal-insu.archives-ouvertes.fr/insu-03706501/document
https://hal-insu.archives-ouvertes.fr/insu-03706501/file/tc-12-2515-2018.pdf
https://doi.org/10.5194/tc-12-2515-2018
id ftunivnantes:oai:HAL:insu-03706501v1
record_format openpolar
spelling ftunivnantes:oai:HAL:insu-03706501v1 2023-05-15T18:32:15+02:00 Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum Cohen, Denis Gillet-Chaulet, Fabien Haeberli, Wilfried Machguth, Horst Fischer, Urs H. Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) 2018 https://hal-insu.archives-ouvertes.fr/insu-03706501 https://hal-insu.archives-ouvertes.fr/insu-03706501/document https://hal-insu.archives-ouvertes.fr/insu-03706501/file/tc-12-2515-2018.pdf https://doi.org/10.5194/tc-12-2515-2018 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-12-2515-2018 insu-03706501 https://hal-insu.archives-ouvertes.fr/insu-03706501 https://hal-insu.archives-ouvertes.fr/insu-03706501/document https://hal-insu.archives-ouvertes.fr/insu-03706501/file/tc-12-2515-2018.pdf BIBCODE: 2018TCry.12.2515C doi:10.5194/tc-12-2515-2018 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal-insu.archives-ouvertes.fr/insu-03706501 The Cryosphere, 2018, 12, pp.2515-2544. &#x27E8;10.5194/tc-12-2515-2018&#x27E9; [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/article Journal articles 2018 ftunivnantes https://doi.org/10.5194/tc-12-2515-2018 2023-03-01T01:36:31Z International audience At the Last Glacial Maximum (LGM), the Rhine glacier in the Swiss Alps covered an area of about 16 000 km 2 . As part of an integrative study about the safety of repositories for radioactive waste under ice age conditions in Switzerland, we modeled the Rhine glacier using a thermodynamically coupled three-dimensional, transient Stokes flow and heat transport model down to a horizontal resolution of about 500 m. The accumulation and ablation gradients that roughly reproduced the geomorphic reconstructions of glacial extent and ice thickness suggested extremely cold (T July ∼0<mrow class="unit"> ∘ C at the glacier terminus) and dry (∼10 % to 20 % of today's precipitation) climatic conditions. Forcing the numerical simulations with warmer and wetter conditions that better matched LGM climate proxy records yielded a glacier on average 500 to 700 m thicker than geomorphic reconstructions. Mass balance gradients also controlled ice velocities, fluxes, and sliding speeds. These gradients, however, had only a small effect on basal conditions. All simulations indicated that basal ice reached the pressure melting point over much of the Rhine and Linth piedmont lobes, and also in the glacial valleys that fed these lobes. Only the outer margin of the lobes, bedrock highs beneath the lobes, and Alpine valleys at high elevations in the accumulation zone remained cold based. The Rhine glacier was thus polythermal. Sliding speed estimated with a linear sliding rule ranged from 20 to 100 m a -1 in the lobes and 50 to 250 m a -1 in Alpine valleys. Velocity ratios (sliding to surface speeds) were >80 % in lobes and ∼60 % in valleys. Basal shear stress was very low in the lobes (0.03-0.1 MPa) and much higher in Alpine valleys (>0.2 MPa). In these valleys, viscous strain heating was a dominant source of heat, particularly when shear rates in the ice increased due to flow constrictions, confluences, or flow past large bedrock obstacles, contributing locally up to several watts per square meter but ... Article in Journal/Newspaper The Cryosphere Université de Nantes: HAL-UNIV-NANTES The Cryosphere 12 8 2515 2544
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic [SDU]Sciences of the Universe [physics]
spellingShingle [SDU]Sciences of the Universe [physics]
Cohen, Denis
Gillet-Chaulet, Fabien
Haeberli, Wilfried
Machguth, Horst
Fischer, Urs H.
Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum
topic_facet [SDU]Sciences of the Universe [physics]
description International audience At the Last Glacial Maximum (LGM), the Rhine glacier in the Swiss Alps covered an area of about 16 000 km 2 . As part of an integrative study about the safety of repositories for radioactive waste under ice age conditions in Switzerland, we modeled the Rhine glacier using a thermodynamically coupled three-dimensional, transient Stokes flow and heat transport model down to a horizontal resolution of about 500 m. The accumulation and ablation gradients that roughly reproduced the geomorphic reconstructions of glacial extent and ice thickness suggested extremely cold (T July ∼0<mrow class="unit"> ∘ C at the glacier terminus) and dry (∼10 % to 20 % of today's precipitation) climatic conditions. Forcing the numerical simulations with warmer and wetter conditions that better matched LGM climate proxy records yielded a glacier on average 500 to 700 m thicker than geomorphic reconstructions. Mass balance gradients also controlled ice velocities, fluxes, and sliding speeds. These gradients, however, had only a small effect on basal conditions. All simulations indicated that basal ice reached the pressure melting point over much of the Rhine and Linth piedmont lobes, and also in the glacial valleys that fed these lobes. Only the outer margin of the lobes, bedrock highs beneath the lobes, and Alpine valleys at high elevations in the accumulation zone remained cold based. The Rhine glacier was thus polythermal. Sliding speed estimated with a linear sliding rule ranged from 20 to 100 m a -1 in the lobes and 50 to 250 m a -1 in Alpine valleys. Velocity ratios (sliding to surface speeds) were >80 % in lobes and ∼60 % in valleys. Basal shear stress was very low in the lobes (0.03-0.1 MPa) and much higher in Alpine valleys (>0.2 MPa). In these valleys, viscous strain heating was a dominant source of heat, particularly when shear rates in the ice increased due to flow constrictions, confluences, or flow past large bedrock obstacles, contributing locally up to several watts per square meter but ...
author2 Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
format Article in Journal/Newspaper
author Cohen, Denis
Gillet-Chaulet, Fabien
Haeberli, Wilfried
Machguth, Horst
Fischer, Urs H.
author_facet Cohen, Denis
Gillet-Chaulet, Fabien
Haeberli, Wilfried
Machguth, Horst
Fischer, Urs H.
author_sort Cohen, Denis
title Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum
title_short Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum
title_full Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum
title_fullStr Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum
title_full_unstemmed Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum
title_sort numerical reconstructions of the flow and basal conditions of the rhine glacier, european central alps, at the last glacial maximum
publisher HAL CCSD
publishDate 2018
url https://hal-insu.archives-ouvertes.fr/insu-03706501
https://hal-insu.archives-ouvertes.fr/insu-03706501/document
https://hal-insu.archives-ouvertes.fr/insu-03706501/file/tc-12-2515-2018.pdf
https://doi.org/10.5194/tc-12-2515-2018
genre The Cryosphere
genre_facet The Cryosphere
op_source ISSN: 1994-0424
EISSN: 1994-0416
The Cryosphere
https://hal-insu.archives-ouvertes.fr/insu-03706501
The Cryosphere, 2018, 12, pp.2515-2544. &#x27E8;10.5194/tc-12-2515-2018&#x27E9;
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-12-2515-2018
insu-03706501
https://hal-insu.archives-ouvertes.fr/insu-03706501
https://hal-insu.archives-ouvertes.fr/insu-03706501/document
https://hal-insu.archives-ouvertes.fr/insu-03706501/file/tc-12-2515-2018.pdf
BIBCODE: 2018TCry.12.2515C
doi:10.5194/tc-12-2515-2018
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/tc-12-2515-2018
container_title The Cryosphere
container_volume 12
container_issue 8
container_start_page 2515
op_container_end_page 2544
_version_ 1766216356239245312